Mapping of Timing Definition Language (TDL)

Components to Distributed Platforms

Johannes Pletzer

Department of Computer Sciences

University of Salzburg

Advisor: Prof. Dr. Wolfgang Pree

A dissertation submitted for the degree of

Doctor technicae (Dr. techn.)

Salzburg, Juli 2012

Abstract

This dissertation deals with the mapping of real-time system components specified
using the Timing Definition Language (TDL) to distributed embedded platforms. TDL
enables the specification of the timing behavior of such components independently of
their functionality and thereby abstracts from the hardware platforms on which they
are eventually executed on. The main contributions are (1) a runtime system suitable
for the distributed execution of TDL components and (2) a code and schedule
generation framework whose aim is to provide fully automatic deployment of
components to any hardware platform using customizable plug-ins. Both the runtime
system and the code generation framework support recent extensions to TDL such as
the ability to specify asynchronous activities. We provide framework plug-ins for a
heterogeneous distributed system using the FlexRay communication protocol to
demonstrate the applicability of our work. A comparison of the TDL tool chain to the
workflow and tools currently employed in the automotive industry rounds out the
thesis.

Acknowledgements

First of all I thank my advisor Prof. Wolfgang Pree for giving me the opportunity to
be part of his excellent research group and to write this thesis. Your positive energy
and bold visions always inspired and encouraged me!

I also thank my co-advisor Dr. Josef Templ for countless software design discussions
and pair-programming sessions. You formed the basis of my software engineering
skills!

Furthermore, my gratitude goes to Claudiu Farcas and Prof. Ingolf Krueger from UC
San Diego for reviewing the thesis. Your perspective helped me to advance my work!

Many thanks also go to my colleagues at the Department of Computer Sciences,
especially Andreas Naderlinger, Peter Hintenaus, Emilia Farcas, Gerald Stieglbauer,
Patricia Derler and Stefan Resmerita, for all those discussions about TDL and other
topics. Without your input I never would have come this far!

Adriana Pratter was a great help for all administrative stuff. Thanks for your cheerful
words when progress was not as fast as expected!

A lot of thanks go to my family and friends for both distracting me from the thesis
and also for reminding me that it is a good thing to continue working on it. Thank
you all for being there no matter what!

The longest lasting support of all was provided by my parents Annemarie and Johann
Pletzer. Thank you for always believing in me without a doubt!

My deepest gratitude goes to my love Gloria Dirnberger for always supporting me,
despite the fact that the thesis consumed a lot of time we otherwise could have
spent together. Thank you for encouraging me until the very end!

Finally, special thanks go to our cat Beijing. You showed me how to relax and how to
enjoy the simple things in life!

Table of Contents

ADbStractc.cciiiiiir 3
AcknowledgementsS . ..ciicciiiiiiiins i i i r i r s r sk rr s rr s rrannRnnRannEa 5
Table of Contentscicviiiriraira i s s s s s r s r s s s s s s nnmnnnnns 7
T o o N e L] o= 11
1. INtrodUuction...icviii i i i i r s r s r s s s r s r s s 13
1.1. Motivation and ConteXt.....cooiiiiiii 13
1.2. Objectives and ContributionS......ccviiiiiiiii e 14
1.3. Structure of the Dissertationccviiiiiiiii e 16
2. Timing Definition Language (TDL) .ciccvcrerierasseranserasserassesassasassasassasansasansns 17
2.1. The Logical Execution Time (LET) Abstraction........cccoooiiiiiiiiiiiiiiiiiiien, 17
2.2. TDL Language CONSEIUCES ..uiviiiiiiiiiiiiiii it et s s s s s e s e saenaeas 18
2.3. Transparent Distribution ..o 22
2.4. EXecution Of TDL Programs c.uuiiiiie ittt it iite et e e et aae e aaeeaaeaaneanas 23
2.5. Extensions for Asynchronous ACtiVitiesccviiiiiiii i e 26
2.6. ViSUAI TDL TOOIS ..ttt e e e e ns 28
0 11 T I o To | I G o - o PP 30
2.8. Related WOrKeieiieiii i 33
3. TDL Runtime Systemiicciiiiiiii i i i v s sr s s s s s s s s rm s nmnnnnnna 37
20 I I 1 I 1 =Tl 1 = PR 41
3.1.1. Initialization v e 42
3.1.2. Step FUNCHION 1o et e 43
3.1.3. Non-Preemptive DispatCher.....c.cocoiiiiiiiiiiiii e 44
3.2. Synchronization Mechanism for Asynchronous Activitiescccoiiiiiinin. 45
3.2.1. Asynchronous ACHiVItiEsciiiiiiiiii i e 45
3.2.2. Threading and Synchronizationccooiiiiiiiiiii e 47
3.2.3. Quantitative Analysis of Runtime Behaviorc.ccoviviiiiiiiiiii e, 53
3.2.4. Related WoOrK ... 53
3.3. TDL Comm Layer FrameWOrkKo.eieiiiiiiiiiiiiiiiiiene e e sesnesneseenens 54
3.3, 1. INItIAliZation . .o.e e e 57
3.3.2. Frame Handling ...coeiiiiiii sttt 58

3.3.3. Communication between Asynchronous Activities..........cccevviiiiiiiinnnnnn. 59

3.3.4. Platform-Specific PIUG-INScooiiie e 60

4. Code and Schedule Generation FrameworKcccuvviimirieninsnnsesnanaes 63
4.1. Framework FOUNdatioNS......o.oieiii e e eeas 66
4.2. Node-Level Code Generationcviviiieiiiiiiiiii e eeas 74

4.2.1. C Platform Plug-In ..o e 77
4.2.2. Embedded C Platform Plug-Incccoiiiiiiiii i ae e 81
4.2.3. Stub Module Generationocvviiiiii 83
4.2. 4. CoOmMMUNICATION LAY el ouiiiiiiiiie i i e e e s anee s aane e sanneesanneens 85
4.3. Cluster-Level Code Generation.......o.vieiiiiiii i e e eaeaens 89
4.3.1. Comm SChedUIEr ... e 91
4.3.2. Iterative Frame Generator.....ovviiiiiiiiii i 97
4.3.3. Genetic Frame Generator ..o 99
4.3.4. Comm Scheduler PIUg-IN......ciciiiiiiiii i i e e aaeas 101

5. Platform-Specific Adaptations for FlIexRayccccviricmiciicin v sn v nnannas 105
5.1. The FlIexRay ProtoColc.oiiiiiiiii i e e 105
5.2, Hardware Platforms. .. .o 107

oA B A\ Yo L= = g =TT 1 N 107
5.2.2. MIiCrOAULOBOX. . vttt 108
5.3. TDL Comm Layer Framework Plug-INSccciiiiiiiiiiii i 110
5.4. TDL:VisualDistributor Interfacesccooiiiiiiiiiii e 111
5.5. Node Platform PlUgG-INSciiiiiiiii i e et aaeaaaeaas 114
5.5.1. Node Renesas Platformoooviiiiiiii e 114
5.5.2. MicroAutoBoX Platformooeiieiii 117
5.6. FlexRay Implementationccooiviiiiii i e 122
5.6.1. FlexRay Communication Layerccvviieiiiiiiiiiii i i enaeenee e 123
5.6.2. Node Renesas Communication Layer.....cccoviiiiiiiiiiiiiiiiii i enaeea 128
5.6.3. MicroAutoBox Communication Layerccviiiiiiiiiiiiie i eiaeea s 129
5.6.4. Cluster Platform PIUg-Tnocuiiiiiiiiii e es 130
LT A - 1Y ST L [P 137

6. TDL WOrKFIOW...cucieieieiiiiiiieiarerere s sinesasasese s s nsnsasasasmsasansnsnsasanasasasasnns 141
6.1, INErOdUCHION e e 141
6.2, AUTOSAR ...ttt ettt e e et 142
6.3. Current Workflow and Tools in the Automotive Industry..........coocviviininnnnn. 144

6.3.1. EB DESIGNEI PrO c.viiiiiiiiiii i e st s s as e s 144
6.3.2. DAVINCi TOOI SUILE ...uei e e 146
6.3.3. EValUation v e 147

6.4. The TDL Approach and its Impact on the Workflow..........ccoooiiiiiiiiinnen. 148

L R I e o o) 148

6.4.2. EValuation ..o 149
6.4.3. WOrkflow AdVantagescociuieiiiie it e e eaens 149
6.4.4. Transition from Today's WOrkflow.......ccooieiiiiiiiiiiiiic e 150
7. Conclusion and Future Workccicvcriirsisssiss s s s s s s snmsannns 151

2 =] = 1 o= 153

List of Figures

Figure 1. Logical Execution Time (LET) .iiiiiiiiiiiiiiiiiii i e e et eae e e 18
Figure 2. Timing and data flow of the producer-consumer examplec.coveveens 18
Figure 3. SIot SeleCtion ..o e e e 21
Figure 4. Physical timing and communication windowc.ccooiiiiiiiiiiiiiiiciiic i, 22
Figure 5. Integration of asynchronous activitiescccciviiiiiiiiiiiicc e 26
Figure 6. TDL:VisualCreator user interfacec.cciiiiiiiiiiiiii e 29
Figure 7. TDL:VisualDistributor user interfaceccooiiiiiiiiiiiiiii e 30
Figure 8. TDL tool Chain OVEIVIEWiiiriiiiiii i reeaaeens 31
Figure 9. TDL SYStem l@y@rs vttt e e a e e ran e aaneaaneans 37
Figure 10. TDL Runtime System include relationshipscccooiiiiiiiiiiiiiiiiiiic i 38
Figure 11. Assumed task model ... 46
Figure 12. Threads and critical regions......c.ciiiiiiiiiiiii i s 48
Figure 13. Stub module data flow.. ... 55
Figure 14. Transmission of a port value via the network...........cocovvviiiiiiiiinnns 56
Figure 15. TDL Comm Layer frame buffers ..o 57
Figure 16. Framework collaboration diagramccooiiiiiiiiiiiiiiic e 64
Figure 17. Framework foundation classes and interfacesccocviviiiiiiiinininns 66
Figure 18. Interface Platformo e e 67
Figure 19. Class ModuleDecl representing the Abstract Syntax Tree (AST) 68
Figure 20. Abstract class AbstractPlatform..........ccoooviiiiiiiiiii 69
Figure 21. Interface NodePlatform.....c.coiiiiiiiiii i aeas 69
Figure 22. Abstract class AbstractNodePlatformccooiiiiiiiiiiens 71
Figure 23. Interface ClusterPlatformcoccviiiiiiiii e 72
Figure 24. Class CommMSChedUIE ... e e 73
Figure 25. Node platform abstraction levels.........c.cooiiiiiiiii s 75
Figure 26. Communication layer class diagramc.ccviiiiiiiiiriiiiiinenenennens 85
Figure 27. Detailed framework collaboration diagramc.cooeiiiiiiiiiiiiienn. 90
Figure 28. Class CommSChedUlero.viiiiiiii i aaeas 91
Figure 29. Sample binding of several messages to the same frame 95

Figure 30. Sample mapping of frame windows to frames.........cccceviiiiiiiiiiiiieinnnn, 96

file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416902
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416903
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416904
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416905
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416906
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416907
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416908
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416909
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416910
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416911
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416912
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416913
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416914
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416915
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416916
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416917
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416918
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416919
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416920
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416921
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416922
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416923
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416924
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416925
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416926
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416927
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416928
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416929
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416930
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416931

Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

Interface CommSchedulerPlugincooiiiiiiiiii e 101
FlexRay CycCle layOuUto e 106
Node Renesas hardware OVerviewcovieiiiiiiiiiiii e 107
ASPACE MIiCrOAULOBOX ...iuiiiieieiiiii et e e 109
TDL:VisualDistributor property page examplecoviiiiiiiiiiiiiiinnne. 111
TDL:VisualDistributor data model classesccoviiiiiiiiiiiiiiieeee. 112
TDL:VisualDistributor interfaces........coovviiiiiii 113
Prototyping hardware node platformscccoiiiiiiiiiiiiiii e 113
Node Renesas node property Pageoovvieiiiiiiiiiiiiiiiiiieeienseanennennenns 115
Node Renesas platform output device mapping dialog.............ccceeee. 115
TDL:VisualDistributor interrupt assignmentccoiiiiiiiiiiiiiinnns 118
MicroAutoBox platform input device mapping dialogcocevvvvvnennnne. 119
FlexRay-related ClassSes.....coviiiiiiiiiiiii i e 123
Node Renesas communication layer class diagramccoovviiiininnnnn. 128
FlexrayPlatform class diagramc.ccciiiiiiiiiiiiiii e 131
FlexRay Property EditOrcooiiiiiiiii i 134
FlexRay cluster property page ...cccvvviiiiiiiiiiiiic e eenaes 134
Legacy case study data flowocooiiiiiiiiii 137
Mapping of a TDL sensor to a FlexRay signalcccvvviiiiiiiniinnnnnn. 138
Case study 0SCilloscope Plot v 138
Automatic platform deploymentccoiiiiiiiii 142
EB Designer Pro Main User Interfacec.oooviiiiiiiiiiiiiiiiiiii e 144
EB Designer Pro workflow overview (white: OEM, gray: supplier)....... 145
DaVinci Tools workflow overview (white: OEM, gray: supplier)............ 146
DaVinci System Architect user interface........coovviiiiiiiiiiiiiiiiii 147

TDL tools workflow overview (white: OEM, gray: supplier) 149

file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416932
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416933
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416935
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416936
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416937
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416938
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416939
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416940
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416941
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416942
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416943
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416944
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416945
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416946
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416947
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416948
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416949
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416950
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416951
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416952
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416954
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416955
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416956
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416957

1. Introduction

This chapter gives an overview of the motivation and main objectives of the thesis
and summarizes its main contributions.

1.1. Motivation and Context

Today, embedded systems and their software are ubiquitous in modern life, with
examples ranging from consumer electronics to medical and transportation systems.
An impressive example of their growing importance is their application in the
automotive and avionics industry. For example, a premium-class car today is
contains millions of lines of code scattered across 70 to 100 networked electronic
control units (ECUs) [1]. Software complexity escalates to the point that current
development processes and tools can no longer ensure sufficiently reliable systems
at affordable cost [2], also leading to a steadily rising cost of software-related
warranty cases. This explains the increasing demand for improved software
engineering, capable of handling the development and maintenance requirements
faced by the industry. The growing complexity of today's embedded systems,
together with the dropping cost of silicon, paves the way for the introduction of new
abstractions in the field of embedded software engineering.

Traditionally, embedded software construction is platform dependent and not
compositional, especially when it comes to its timing properties. This leads to
increased efforts required for integration, validation and maintenance. The timing
behavior is typically not specified explicitly but rather is a result of system load and
the occurrence of sometimes unpredictable events at runtime and so developers
often rely on intensive testing, although that can never proof that their design works
as required under all circumstances. The concept of the Logical Execution Time (LET)
introduced in the realm of the Giotto project [3] aims to overcome this shortcoming
by abstracting from the physical execution time of tasks and, in the distributed case,
from network communication. The LET abstraction specifies that the inputs of a task,
which can be values obtained from sensors or from other tasks in the system, are
read at the beginning of the LET period and the outputs provided to other tasks or
actuators are only updated at the end of a task's LET. The LET programming
paradigm enables the platform independent description of the timing behavior, which
is guaranteed to be equal on any hardware platform, provided that it is fast enough.
Thus, the LET abstraction leads to a significant reduction of complexity as it allows
embedded software developers to focus on the functionality of a software component
without having the target platform in mind.

Apart from Giotto, there are some other research projects which base on the
promising LET concept. xGiotto [4] is one successor of Giotto which has events as its
main structuring principle. It allows the definition of LETs for synchronous and
asynchronous tasks and guarantees time-safety mainly by constraining the

14 Introduction

occurrence rate of events and therefore bounding the time it takes until an event is
processed. The Hierarchical Timing Language (HTL) [5] enables the hierarchical
refinement of so-called abstract task invocations for the purpose of compact
representation and simplified program analysis and schedulability tests.

The Timing Definition Language (TDL) also facilitates the LET abstraction and aims at
supporting the development of deterministic, portable software for embedded real-
time systems. It goes beyond Giotto in a number of aspects, most notably by the
introduction of a component model and the integration of asynchronous activities.
While Giotto is basically an abstract mathematical model of a time-triggered
language with a rather simple tool chain that primarily proofs that it can be
implemented, the TDL project aims at providing a comprehensive tool chain that
makes Giotto's concepts available for real-world industrial projects. This is something
which also xGiotto and HTL fail to provide, but is a necessity in order to eventually
tackle the aforementioned challenges the industry is facing today.

1.2. Objectives and Contributions

The development of TDL started in 2003 in the context of the MoDECS (Model-Based
Development of Distributed Embedded Control Systems) project [6]. Our work
primarily bases on [7], which laid the foundation for a portable TDL runtime system,
and [8], which proposed the transparent distribution of TDL modules. Recently, the
TDL language has been extended by a number of essential features, above all the
combination of the time-triggered and event-triggered paradigms by adding support
for asynchronous activities. It allows specifying event-triggered (alias asynchronous)
activities, which are triggered by the occurrence of an external hardware interrupt or
other events, and which many real-time systems execute in addition to strictly time-
triggered (alias synchronous) activities. Integrating asynchronous activities and other
additional features require adaptations along the complete TDL tool chain, affecting
the compiler, the runtime system, and code and schedule generation for nodes and
communication networks. The extensions were driven by the vision of the application
of TDL in industrial environments, and consequently we incorporated many hints
from our industry partners which features they need and what would ease the
integration of TDL in their existing development workflow. This not only led to
numerous language adaptations and platform implementations, but also to
extensions that require thorough theoretical research.

The following motivates and summarizes all major thesis contributions, which all are
related to specific advancements of the TDL language and tools in recent years.

Code & Schedule Generation Framework

Software modules developed with TDL are envisioned to be deployed on a broad
range of different hardware platforms, including diverse communication protocols
and operating systems. For that purpose, it was required to come up with a generic
code generation framework.

One of the major contributions of this thesis is a flexible, LET-based code generation
framework for potentially distributed real-time systems. A distributed system is as
system consisting of multiple, interconnected computing nodes. The framework
covers both code generation on node level as well as the generation of a
communication schedule for the communication bus connecting such nodes. For that
purpose task and communication schedules must be generated. Those schedules
influence each other and consequently our framework deals with their
interdependence by pioneering an iterative scheduling approach. The framework is
extensible by the use of plug-ins, which implement support for specific node

Introduction 15

platforms and communication protocols and therefore guarantee a clear separation of
platform independent from platform dependent concerns. We present the plug-in
interfaces and describe sample plug-ins. We also show that the proposed framework
is not limited to TDL but can be applied to other languages that use the LET
abstraction and that it is substantially more general and powerful than the
methodology and tools presented in [8]. We provide empirical comparisons of
various scheduling approaches and also investigate the use of genetic algorithms for
this specific scheduling problem.

TDL Runtime System Advancement

Based on the work of Farcas [7], we redesigned the TDL runtime system so that it
supports all recent TDL extensions such as cyclically imported modules, structured
data types and global output ports. A special focus is on developing a communication
layer with a well-defined interface in order to support specific communication
protocols and a corresponding implementation compatible with the FlexRay protocol.

The most significant advancement of the TDL Runtime System is the integration of
asynchronous activities. While synchronous activities are coordinated by the so-
called TDL Machine, asynchronous activities are not as time critical and therefore are
executed in the background so that they do not affect the timing behavior of
synchronous activities. However, it is allowed that synchronous and asynchronous
activities exchange data in a properly synchronized way. We describe the TDL
language extensions and put special focus on the threading model and
synchronization algorithm handling the data flow between the synchronous TDL
Machine and asynchronous activities. We implemented the TDL Runtime System
support by means of platform plug-ins for a number of target platforms, including
distributed systems.

FlexRay Support

Another main objective of the thesis is to prove the applicability of TDL in real-world
control applications. The FlexRay protocol is a state-of-the art communication
protocol targeted at automotive applications and significantly gained importance,
which eventually led to its adoption in automotive series production since 2006 [9].
While previous TDL prototype implementations supporting distribution used the CAN
protocol, we then chose to apply TDL to the FlexRay communication bus and
corresponding prototyping hardware commonly used in the industry, such as the
MicroAutoBox from dSPACE and the NODE<RENESAS> by DECOMSYS (now
Elektrobit). The FlexRay protocol is especially suitable for TDL as it has a static, time-
triggered part, which we use for communicating synchronous TDL activities, and a
dynamic, event-triggered part, which fits well for handling asynchronous TDL
activities. We implemented FlexRay support by means of a code generation
framework plug-in which calculates all required cluster and node parameters and
ensures that the FlexRay cluster startup is performed correctly. In addition, we
provide the ability for what we call incremental scheduling, i.e. the augmentation of
an existing FlexRay schedule of a legacy system. This enables to share the bus
between legacy devices and nodes running TDL while also allowing their interaction
via the exchange of messages.

TDL Workflow Analysis

TDL has a significant impact on the development process. In an effort to
demonstrate the differences between the TDL approach and the conventional way
embedded software is designed, we compare the workflow when using the TDL
language and tools with two state-of-the-art commercial tools for the design of

16 Introduction

distributed embedded systems. For this comparison, we focus on the automotive
industry and compare TDL to Elektrobit's DESIGNER PRO [10] and Vector's DaVinci
Tools based on the AUTOSAR standard [11].

Furthermore, we analyze the current development workflow in the automotive
industry, which mainly is characterized by the relationship between the original
equipment manufacturer (OEM) and its suppliers. We question if and how it is
possible to fit TDL in this workflow and evaluate possible ways to integrate it. We
also describe what can be done in order to ease the paradigm shift, as for example
the application of incremental scheduling which enables the combination of TDL with
legacy systems and therefore allows for a smooth transition between the different
development approaches.

1.3. Structure of the Dissertation

The thesis is divided into the following chapters: Chapter 2 introduces the Timing
Definition Language (TDL) by describing its syntax, semantics, recent extensions,
graphical front-ends, and tool chain. Chapter 3 details a generic TDL Runtime System
for potentially distributed systems programmed in C. The static runtime system
requires code which must be dynamically generated, for which the code and schedule
generation framework described in chapter 4 is used. Chapter 5 presents plug-ins for
this framework for a number of supported target platforms using the FlexRay
communication protocol and demonstrates the usage of the framework and plug-ins
by means of concrete examples. Chapter 6 takes an in-depth look at the
development workflow TDL introduces and compares it to the one currently
employed in the automotive industry. The thesis concludes with an outlook on future
work in chapter 7.

2. Timing Definition Language (TDL)

The Timing Definition Language (TDL) is a high-level textual notation which allows
the explicit specification of the timing aspects of a real-time system. Such a system
typically performs periodic activities which consist of three phases, namely the
reading of sensors, followed by a computation tasks and finally the setting of
actuators [12]. In contrast to the traditional real-time system engineering approach,
where the timing properties are typically a result of platform-dependent or non-
deterministic factors such as the CPU clock speed and the occurrence of interrupts, in
TDL the timing of tasks is exactly specified and is preserved on every hardware
platform. Therefore, TDL allows developing and testing a software component only
once and then deploying it to any supported and powerful enough hardware
platform. This leads to significant advantages in system development, especially
concerning testing, simulation, deployment and maintenance.

In 2001, the Giotto project at the University of California in Berkeley laid the
scientific foundation for TDL by introducing a new programming abstraction called
the Logical Execution Time (LET) [3], which decouples the logical timing of
computation tasks from their physical execution. The development of TDL started in
2003 in the context of the MoDECS (Model-Based development of Distributed
Embedded Control Systems) project at the University of Salzburg. Based on the
project's results a spin-off company named preeTEC was founded in 2005 with the
goal to make the TDL language available to real-world industry applications. In
collaboration with partners from the industry, the development of the TDL language
and tools and continued in a sequence of steps until now, whereas a significant
milestone was marked by the integration of asynchronous activities in 2008.

In this chapter we present the LET concept and the constructs and syntax of the TDL
language, including numerous extensions that have been added recently.
Furthermore, we will present an overview of the tool chain enabling the application of
TDL to real-world systems.

2.1. The Logical Execution Time (LET) Abstraction

The TDL language is based on the concept of Logical Execution Time (LET), which
was introduced in the realm of Giotto [3]. It aims to resolve typical shortcomings of
embedded software construction, such as platform dependency and lack of
compositionality. These are caused primarily by the fact that timing behavior is not
specified explicitly but rather is a result of system load and the occurrence of
unpredictable events at runtime. The LET abstraction offers a solution by abstracting
from the physical execution time of tasks and, in the distributed case, from network
communication. It does so by specifying that the inputs of a task, which can be
values read from sensors or outputs of other tasks, are read at the beginning of the

18 Timing Definition Language (TDL)

release . . ’ terminate
Logical Execution Time (LET)

Logical j
\ task invocation

L
Physical ﬁ(

L

_ time

start suspend resume stop (worst case)
Figure 1. Logical Execution Time (LET)

LET period and the outputs provided to other tasks or actuators are only updated at
the end of a task's LET. As shown in Figure 1, we call the beginning of the LET the
release event and its end the terminate event. Between these, the outputs have the
value of the previous execution. It is always defined which value is in use at which
time instant and there are no race conditions or priority inversions involved. LET
provides the cornerstone to deterministic behavior, well-defined interaction
semantics between parallel activities and platform abstraction. As long as physical
task execution at runtime and potential network communication take place within the
LET of a task, the software will exhibit exactly the same observable behavior on any
platform - no matter if it is fast, slow or even distributed.

In TDL, tasks interface with other tasks and sensors and actuators solely via so-
called ports. Arranging the data flow by copying from one port to another, e.qg.
reading input ports and writing output ports, is considered a Logical Zero Time (LZT)
operation. On the other side, the execution of the task's body is considered to be a
long running operation that cannot simply be ignored.

2.2. TDL Language Constructs

TDL provides language constructs for the specification of systems based on the LET
abstraction. This section introduces those constructs by means of a simple producer-
consumer example. Figure 2 illustrates the data flow between two LET-based
components called Sender and Receiver. Sender contains a task produce with a LET
of 5 ms and Receiver runs a task consume with a LET of 10 ms. In this example,
consume receives the output value of produce. The vertical arrows in the figure

. LET5ms _, , , ,

Sender produce produce produce produce

vV —+

communication of produce’s

output to consume

consume consume

Receiver

LET 10 ms

Figure 2. Timing and data flow of the producer-consumer example

Timing Definition Language (TDL) 19

indicate when the results of produce are communicated to consume, which is exactly
at the terminate event at the end of produce’s LET. The value is then available for
consume at its release event at the start of its next LET period.

In the following, we present the TDL code of the Sender module step-by-step:

module Sender ({

A TDL module represents a component of the system. Modules are the top-level
structuring concept of TDL and serves multiple purposes: (1) a module is a named
program unit and allows the decomposition of large systems by providing a name
space and an export/import mechanism, (2) modules enable the parallel composition
of a system as the timing behavior of a module is not affected by other modules, (3)
modules serve as units of loading, i.e. a runtime system may support dynamic
loading and unloading of modules, and (4) modules serve as unit of distribution
because data flow within a module (cohesion) will typically be much larger than data
flow across module boundaries (adhesion). All modules of a system are logically
executed in sync and the data flow semantics is defined according to the LET
abstraction.

In the TDL language a module is specified by the module keyword followed by its
name and an enclosing curly bracket containing all constructs of the module, as can
be seen in the two example modules Sender and Receiver above.

sensor boolean switch uses getSwitch;
actuator int display uses setDisplay;

The first constructs in the Sender module are sensor and actuator definitions. They
are defined by a data type (in this example boolean and int), an identifier, and the
name of a functionality code function followed by the uses keyword. This function
contains the code which actually implements the reading of a sensor (getter function)
and the setting of an actuator (setter function).

public task produce {
output int o := 10;
uses producelmpl (0) ;

}

TDL tasks are declared by specifying a task's inputs, outputs and implementation
function which is again indicated by the uses keyword. The output port o of task
produce is initialized with a value of 10. Note that a task declaration contains no
information on the LET and timing of the task or if it is even executed at all.

start mode main [period=10ms] {

task

[fregq=2] produce(); // LET = 10ms/2 = 5ms
actuator

[freg=1] display := produce.o; // updated every 10ms
mode

[freg=1] if exitMain (switch) then freeze;

}

mode freeze [period=10ms] {}

}

The timing of tasks is defined by so-called task invocations, which are one of the
activities specified in a TDL mode. TDL supports multiple modes of operation for

20 Timing Definition Language (TDL)

every module where only one mode of a module can be active at a time. A mode
specifies the exact timing of mode activities which are (1) task invocations, (2)
actuator updates, and (3) mode switches. The Sender module has two modes: A
normal mode of operation called main and a dead end mode called freeze. The
conditions and time instants for mode switches are specified in the mode section of a
mode. Note that freeze has no mode section and therefore it is not possible to leave
this mode, meaning that after switching to it the module is effectively halted
indefinitely. Every mode has a period after which its timing pattern repeats itself for
as long as the mode is active. The frequency of an activity inside a mode is indicated
by the freq attribute followed by an integer value which specifies how many times
the activity is carried out per mode period. As for example the frequency of task
produce is 2, its LET is 10 ms divided by 2 and therefore 5 ms. Note that the
actuator display is only updated every 10 ms in this example.

module Receiver {
import Sender;
actuator int display uses setDisplay;
task consume {
input int i;
output int o;

uses consumelImpl (i, o);

}

mode main [period=10ms] {

task

[freg=1] consume (Sender.produce.o) ;
actuator

[freg=1] display := consume.o;

The module Receiver makes the Sender module accessible by use of an
import/export mechanism which is comparable to general purpose programming
languages such as Java or C#. By specifying the name of a module after the import
keyword, all constructs declared as public in the given module (e.g. the task
produce in the Sender module) are accessible by the importing module. Also cyclic
import relationships are allowed. Constructs of imported modules are referenced by
using a dot notation. An example would be the use of Sender.produce.o as
argument for the task consume in the mode declaration of the Receiver module.

Further language constructs

The example above only uses a basic subset of all the available language and syntax
features of TDL. In the following, we present a number of additional language
constructs by means of modifications to the demo application above. Detailed
discussion of those constructs can be found in [13] and a complete feature list and
EBNF grammar of the language in the TDL Language Report [14].

Global output ports. In addition to ports assigned to specific tasks, it is also
possible to define global output ports. Such ports can be written to by different tasks,
but only by one task per mode. The following is an adapted version of parts of the

Timing Definition Language (TDL) 21

Sender module above, using the global output port globalO instead of the task
output port o:

public output int globalO := 10;

public task produce {
uses producelImpl (globalO);
}

start mode main [period=10ms] {
task
[freg=2] produce(); // LET = 10ms/2 = 5ms
actuator
[freg=1] display := globalO; // updated every 1l0ms
[...]

Slot selection. By default, the period of a mode and the frequency of a task
invocation define consecutive invocations whose LETs equal to the mode period
divided by the frequency. TDL slot selection allows a more fine-grained specification
of the timing task invocations. We call the intervals resulting from the division of the
mode period by the frequency slots. Slot selection allows the programmer to specify
which slots to use for the LET of a task invocation. Figure 3 illustrates the resulting
slots for three different combinations of frequency and slot annotations. Note that
slots=1* also is the default if the slot annotation is omitted, meaning that every slot
is used as LET for an invocation of the task specified. In the following example code
the mode period of 10 ms is divided into 4 slots with length 2.5 ms each by the
setting a frequency of 4. The slot annotation slots=1-214 results in a task
invocation LET of 5 ms at the beginning of the mode period and another invocation
with LET 2.5 ms from 7.5 ms to 10 ms at the end of the mode period.

start mode main [period=10ms] {
task
[freg=4, slots=1-2|4] produce();
[...]

Mode period = 10 ms

fregq=1, slots=1* 10 ms slot
freq=4, slots=1* 2.5ms slot | 2.5 ms slot | 2.5 ms slot | 2.5 ms slot
freg=4, slots=1-214 5 ms slot 2.5 ms slot t

v

Figure 3. Slot selection

Task splitting. Typically, a TDL task is associated with a single external function
that represents the task's body. However, for some applications it is beneficial to
split up this function into two parts, a method which we call task splitting. These two
parts consist of one simple function (fast step) which is executed in Logical Zero
Time (LZT) when the task is released, i.e. at the task's LET start, and another long
running function (slow step) which is executed within the LET of the task. The latter
may update the task's internal state by some advance calculations such that the next

22 Timing Definition Language (TDL)

call of the LZT function can be done fast. This can be utilized e.g. for digital
controllers which need to evaluate a polynomial as the core of their implementation.
The following code shows task splitting applied to the produce task of the Sender
module above:

public task produce {
output int o := 10;
uses [release] producelmplFast (o)
uses producelImplSlow(0);

}

Task sequences. So-called task sequences allow setting actuators immediately after
a task invocation. Such a sequence consists of a task invocation followed by a set of
actuator updates. When combined with task splitting, this can be used to update
actuators right after the fast task part at the LET start. This feature can be helpful in
digital controller applications, where as a rule of thumb the reaction time of a
controller should be below 10% of the sample time in order to achieve stable
controller behavior. The syntax for using a task sequence is to enclose the task
invocation and the actuator updates in curly brackets, as the following example code
shows:

start mode main [period=10ms] {
task
[freg=2] {produce(); display := produce.o;}
[...]

2.3. Transparent Distribution

communication communication
window window
1 1 1 1
1 1
produce pt’pduce produce pﬂloduce t

L
A
r

; I} | local
R i buffer
communication| - N o B
bus :
i | local
o o N o buffer

Receiver consume

1

LET 10 ms

Figure 4. Physical timing and communication window

As briefly mentioned above, the behavior of TDL modules is also preserved when
they are distributed across multiple nodes of a distributed system. This is done by
accounting for the time it takes to communicate values via a network inside the LET
of the task which produces them. In order to illustrate this, let us look at the
producer-consumer example as described above. Figure 2 shows a logical view of our
example system as it does not contain any information on how the two components
are deployed on a platform. In contrast, Figure 4 also indicates the physical timing,

Timing Definition Language (TDL) 23

assuming that the Sender and Receiver modules are executed on a distributed
system. The Sender module is deployed on node Nodel and Receiver on Node2,
which are connected to each other via a communication bus. The black blocks
indicate the physical execution time of the tasks on a node's CPU. In such a setup
the output of produce must be transferred via the bus. The communication window
for doing so spans from the end of produce's physical execution time to the
terminate event at the end of its LET. As long as the network communication takes
place within this window, this distributed system shows exactly the behavior
specified by the LET semantics.

Handling network communication inside the LET leads to the notion of transparent
distribution [15], as the fact that a system is distributed does not change its
observable behavior in comparison to execution on a single node. What might differ
is only the physical behavior at runtime, in particular the order and length of task
executions and the time when messages are communicated. From the perspective of
the developer of a LET component, this means the possibility to focus on the
functionality without having the target platform in mind, i.e. without caring whether
components will eventually executed on the same node or not. Furthermore, the LET
concept lays the basis for automatic communication schedule generation, as the size
and timing of network frames can be determined automatically by analyzing the
communication requirements between LET components.

2.4. Execution of TDL Programs

This section explains how the timing specified in TDL modules is realized on a target
platform. For that purpose, a compiler (called the TDL compiler) transforms a TDL
program, i.e. a timing definition, into instructions of a virtual machine (called
Embedded Code or E-Code) which are executed by an appropriate runtime system
(called TDL Machine). On the target platform, the TDL Machine is activated
periodically and orchestrates the timing and data flow of TDL modules by interpreting
their E-Code. Its execution time is kept to a minimum as it only carries out logical
zero time activities such as reading sensors, updating task ports, and setting
actuators. The TDL Machine is however not responsible for the execution of task
functionality code. This must be handled externally, typically by the operating
system's scheduler.

The instruction set of the TDL Machine is small and consists of the nine instructions
presented in Table 1. For every module a separate sequence of E-Code instructions is
generated. It consists of a number of blocks, each block comprising all instructions
that must be executed for a specific module during one invocation of the TDL
Machine at a particular point in time. A block of E-Code is terminated with a return
instruction. TDL modes may consist of multiple blocks, whereas the last block of a
mode is followed by a jump instruction which lets execution continue at the
beginning of the first block of this mode.

An E-Code block might be further structured by the use of markers that indicate the
last termination driver (end of termination drivers — EOT) and the last actuator
update (end of actuator updates - EOA). The former is important for solving cyclic
dependencies between modules by first executing all termination drivers of all
modules and then continuing execution from there on. The EOA marker is required
for the correct simulation of TDL modules in simulation environments such as
MATLAB/Simulink. As these markers have no functional purpose, we encode them as
a nop(1) and nop(2) instruction respectively.

24 Timing Definition Language (TDL)

Instruction Meaning

A dummy (no operation) instruction. The
argument fis used as a marker for

nop(f) identifying different sections in the E-Code,
such as the end of termination drivers and
the end of actuator updates.

call(d) Executes the driver d.

release(T) Marks the task T as ready for execution.

Plans the execution of the E-Code block

future(a, dt) starting at address a in dt microseconds.

Proceeds with the next instruction if guard

if(g, elsePC) g evaluates to true, else jumps to elsePC.

jump(a) Jumps to the instruction at address a.

return Terminates an E-Code block.

Uses a counter per module for jumping n
times to instruction a. After that it
repeat(a, n) continues with the next instruction. This
instruction allows for compacting an E-
Code block which repeats itself.

Performs a mode switch to mode M, i.e.
the TDL Machine continues at the entry
point of M. In addition, the module's repeat
counter is set to zero.

switch(M)

Table 1. TDL Machine instruction set

The following lists an example E-Code obtained after compilation of the Receiver
module of the producer-consumer example from above:

00 call(1l) // actuator init: setDisplay(display)
01 return{()

02 call(0) // terminate task: consume

03 nop (1) // EOT - end of task terminations marker
04 call(2) // actuator update: display := o

05 call(1l) // actuator setter: setDisplay(display)

06 nop(2) // EOA - end of actuator updates marker

07 call(3) // prepare task for release: consume

08 release(0) // release task: consume (uses consumelImpl)

09 future(11,10000)// continue at instruction 11 in 10000 us
10 return()
11 jump (2) // Jjump to instruction 2

The first block of E-Code (in this example code only instruction 0 and the
corresponding return instruction) is only executed once at system startup. It is used
for the initialization of actuators and task output ports. The call instruction executes
the driver with the index 1. This driver updates the actuator display by calling the
actuator update function setDisplay with the actuator port as argument. Drivers are
used to encapsulate functionality such as port copy operations in order to be able to

Timing Definition Language (TDL) 25

support different programming languages easily. There are also drivers for evaluating
guards, switching modes, and starting and stopping of task functions.

After initialization, execution continues at the entry point of the start mode of the
module. In our example there is only one mode and it is therefore the start mode. Its
entry point is instruction 7, which prepares task consume for execution by updating
its input ports. Afterwards the task is released and then the future instruction sets
the time and instruction where the TDL Machine must continue execution for this
mode. The future time is relative, i.e. instruction 9 means that after 10000
microseconds execution must continue at instruction 11. Instruction 11 is actually a
jump to instruction 2, which terminates task consume and subsequently updates the
corresponding actuators. This finishes the mode cycle as we again arrived at
instruction 7, the entry point of the mode.

The E-Code of the Sender module, which contains two modes, looks like this:

00 call(l), // actuator init: setDisplay(display) */
01 return{()

02 nop (1) // EOT - end of task terminations marker
03 nop (2) // EOA - end of actuator updates marker

04 future(6,10000) // continue at instruction 6 in 1000000 us
05 return ()

06 Jjump (2) // Jjump to instruction 2

07 call(2) // sensor getter: switch := getSwitch()

08 call(0) // terminate task: produce

09 nop (1) // EOT - end of task terminations marker

10 call(3) // actuator update: display := o

11 call (1) // actuator setter: setDisplay(display)

12 nop(2) // EOA - end of actuator updates marker

13 if(0,16) // 1if guard 0 is true goto 16; mode switch
// guard: exitMain

14 call (4) // mode switch driver

15 switch (0) // mode switch -> freeze

16 call(5) // prepare task for release: produce

17 release(0) // release task: produce (uses produceImpl)

18 future (20,5000) // continue at instruction 20 in 5000 us
19 return ()

20 call(0) // terminate task: produce

21 nop (1) // EOT - end of task terminations marker
22 nop(2) // EOA - end of actuator updates marker

23 call (5) // prepare task for release: produce

24 release (0) // release task. produce (uses producelImpl)

25 future(27,5000) // continue at instruction 27 in 5000 us
26 return()
27 Jump (7) // jump to instruction 27

There is an initialization section comprising the first two instructions, then the E-Code
section for mode freeze spanning from instruction 2 to 6 and finally a set of
instructions for mode main from instruction 7 to 27. The E-Code follows the basic
pattern as presented for the Receiver module above, but additionally includes a
conditional mode switch handled by an if instruction (line 13) and the corresponding
switch instruction (line 15).

Note that the TDL compiler does not take any platform-specific aspects into account,
meaning in specific that the E-Code looks exactly the same no matter if modules are
distributed across multiple nodes or not. Platform-specific aspects are entirely
handled by the so called glue code, which will be discussed in 2.7.

26 Timing Definition Language (TDL)

2.5. Extensions for Asynchronous Activities

The most important recent extension to the TDL language is the integration of event-
triggered (alias asynchronous) activities. Before this extension, TDL only supported
the platform independent specification of the time-triggered aspects of a real time
system by the strictly periodic execution of statically scheduled activities, such as
task invocations and actuator updates. A pre-computed schedule guarantees that the
timing requirements of the system will be met in any case by taking the worst case
execution time (WCET) into account. Such operations are also called synchronous
(alias time-triggered) activities. The timing requirements of such activities are
typically in the range of milliseconds or sometimes even below.

While the time-triggered execution of periodic tasks provides the cornerstone of
dependable real-time systems, in addition many such systems execute asynchronous
activities that are, for example, triggered by the occurrence of an external hardware
interrupt or any other kind of trigger. In the context of a dependable real-time
system such asynchronous activities are considered to be not as time critical as
synchronous tasks are, and can therefore be executed in a background thread while
the CPU is idle otherwise.

The main challenge when adding asynchronous activities to TDL was to execute them
as timely as possible while not sacrificing the guaranteed execution of synchronous
activities. Furthermore, the data flow between the two domains must be properly
synchronized. Adding asynchronous activities could be done in a platform-specific
way by directly programming at the level of the operating system or task monitor
and so to speak "outside" of TDL. However, this approach has two drawbacks: (1) it
is platform dependent and (2) it does not support proper synchronization of data
exchanged between synchronous and asynchronous activities. Therefore we
extended TDL by a notation for asynchronous activities and provided a runtime
system for this extended TDL language on a number of target platforms.

e LET5ms ; : g

produce produce produce produce

V —+

spare time for asynchronous activities (background task)

physical task execution

Figure 5. Integration of asynchronous activities

An asynchronous activity in TDL is an activity that is carried out in the spare time
between the execution of time-triggered (synchronous) activities and thereby does
not disturb the real time properties of a system. Figure 5 refers to Nodel of the
producer-consumer example from above and indicates the physical execution of task
produce and the spare time available for the execution of asynchronous activities. To
keep the processing of asynchronous activities simple and as we assume that they
are not as time-critical as synchronous tasks, we do not allow asynchronous activities
to be preempted by other asynchronous activities but only allow preemption by
synchronous activities. The TDL runtime system takes care of the synchronization of
the data flow between synchronous and asynchronous activities such that reading
input ports, updating output ports, and performing actuator updates are atomic
actions.

Timing Definition Language (TDL) 27

Asynchronous activities are introduced at the level of the TDL module construct.
Every module may optionally declare asynchronous activities as the last section
within the module construct using the asynchronous keyword. The following version
of the producer-consumer example from above uses the same tasks and data flow
but both tasks are now triggered asynchronously. The producer task is triggered by
an external interrupt and the consumer task by the update of the output port of the
producer task.

module Sender {
actuator int display uses setDisplay;

public task produce {
output int o := 10;
uses producelmpl (0) ;

}

asynchronous {
[interrupt=intLinel, priority=5]
produce (); display := produce.o;

module Receiver {
import Sender;
actuator int display uses setDisplay;

task consume {
input int i;
output int o;
uses consumelImpl (i, o);

}

asynchronous {
[update=Sender.produce.o]
consume (Sender.produce.o); display := consume.o;

TDL supports the grouping of asynchronous activities into sequences that are
triggered as one unit and executed strictly sequential. Any such sequence has an
associated trigger event, an optional guard, and a sequence of asynchronous
activities. An asynchronous activity may be a task invocation or an actuator update.
In both example modules above, the producer and consumer task invocation is
immediately followed by a corresponding actuator update. A task may either be
invoked synchronously or asynchronously but not both. Also, an actuator update
must either be done synchronously or asynchronously but not both. Note that mode
switches are the only TDL activity which cannot be invoked asynchronously, as a
mode switch must be synchronized with the corresponding mode period and must
not preempt any synchronous task.

Triggering an asynchronous activity sequence means that the sequence is registered
for execution at some later time at the discretion of the TDL runtime system. Any
additional triggering of a registered activity sequence is ignored until the execution of

28 Timing Definition Language (TDL)

this activity sequence starts. Parameter passing takes place as part of the execution
not at the time of registration.

The kind of event that triggers the execution of an asynchronous activity sequence is
specified by the attribute name interrupt, update, or timer, where the first two
can be found in the examples above. In case of an interrupt, the attribute value must
be an identifier which needs to be mapped to platform-specific interrupt
specifications, e.g. to a specific hardware interrupt pin, outside the TDL source code.
This identifier is intLinel in the Sender module above. In case of a port update, the
attribute value must be the name of an output port. For the asynchronous activity in
the Receiver module, this port is the output port of the producer task,
Sender.produce.o. Whenever this port receives a value, it triggers the
asynchronous activity sequence. In case of a timer, the attribute value must be an
integer greater than zero. It describes the period of a timer in microseconds.

The priority of an asynchronous activity sequence is specified by the attribute name
priority and a value greater or equal to zero, where higher numbers mean higher
priority. The default priority is the lowest value. Only a single asynchronous activity
is executed in the spare time between synchronous activities until it finishes. The
priority attribute determines which activity is executed next by affecting the queuing
order of registered asynchronous activity sequences. Therefore it should not be
mixed up with a thread priority level.

2.6. Visual TDL Tools

For the development and editing of TDL modules and complete TDL systems, two
visual tools are available. The TDL:VisualCreator is used for the platform-
independent editing of TDL modules, while the TDL:VisualDistributor enables the
deployment of TDL modules on a concrete, potentially distributed, target platform. In
the following we describe both tools in detail.

The TDL:VisualCreator is a syntax-driven, graphical editor for TDL modules.
Consequently, it supports the full feature set of the TDL language and allows the
import and export of arbitrary TDL code. Figure 6 shows the user interface of the
TDL:VisualCreator, depicting the Sender module of the producer-consumer example
as presented above. The interface is divided into three main parts. To the left there
is a tree representation of all constructs of a module. Specific properties of these
elements, e.g. the period of a mode or the frequency of a task, can be edited in
property fields below. The large modeling canvas to the right is used to model data
flow, e.g. between a task's ports and ports of other tasks, sensor, and actuators with
respect to a specific TDL mode.

In addition to running the TDL:VisualCreator tool standalone, it can also be run
integrated in MATLAB/Simulink [16]. Simulink is a commercial tool by The Mathworks
for modeling, analyzing and simulating dynamic systems. It is widely used for control
applications, including automotive system engineering. Simulink is tightly integrated
with MATLAB and offers a block diagram style interface. The Simulink integration
enables additional features of the TDL:VisualCreator, namely the usage of standard
Simulink blocks for the design of the functionality of TDL tasks and the simulation of
the behavior of complete TDL systems. Due to the LET abstraction, this simulation is
guaranteed to be equal to the observable behavior the system will show when it is
finally executed on a concrete hardware platform. This is a unique feature in
comparison to other simulation tools for potentially distributed systems, which
typically take platform details such as processor speed and communication protocol
latencies into account in order to obtain an accurate simulation result. Using TDL,
systems can be precisely simulated even before the target platform is even known as

Timing Definition Language (TDL) 29

£ Module: Receiver

File Edit Tools Help
Cal R S P

= (I—) Receiver M) Mode: main
H-] Imparts

=) J Actuators

e] display Sender produce.o

=) J Taszks
= J COnsume
= ﬂ consumelml

1 consUme o

=) J hodes

-] carsume

------ S dizplay
----- 1 &zynchronous

display

Propetty “alle
Iiertifier miain
Period 1

Time Unit s

hiocle

Figure 6. TDL:VisualCreator user interface

the LET abstraction exactly specifies the behavior in the time and value domain. This
behavior is also guaranteed when it is later executed on any hardware platform by
means of the TDL Machine discussed above. The only notable exception, for which
accurate simulation independent from the platform is not possible, are TDL systems
which incorporate asynchronous activities. Those are simulated as soon as the
corresponding trigger event occurs and in logically zero time or within their WCET if
one is given. This limitation is inherent to the chosen semantics of asynchronous
activities, which are executed as a background task on the platform and are
supposed to be used for non-critical tasks. For details on the Simulink integration
and simulation refer to [13].

While the TDL:VisualCreator's purpose is to provide platform-independent modeling,
the TDL:VisualDistributor is used for mapping TDL programs to specific platforms and
eventually to generate code for the complete TDL system. It is a frontend for the
deployment of TDL modules on a potentially distributed hardware platform. It allows
specifying the platform, i.e. the nodes and communication buses connecting them.
Support for an open ended set of communication and node platforms can be added
via a plug-in architecture. When mapping a TDL module to a concrete node, a
platform-specific Worst Case Execution Time (WCET) must be set for every task of a
module running on this node. Furthermore, the sensors and actuators of a TDL
module must be assigned to specific hardware devices either by specifying an
external function or via a graphical interface in case the corresponding node plug-in
supports that. Finally, the complete code for the system can be generated. This also
triggers the fully automatic communication schedule generator which determines the
communication requirements of TDL modules by their deployment to nodes. When
using the MATLAB/Simulink integration feature of the TDL:VisualDistributor, the
functionality code can also be generated automatically from the Simulink model by a
standard MATLAB tool nhamed Real-Time Workshop Embedded Coder (RTW-EC). The

30 Timing Definition Language (TDL)

£ TDL:VisualDistributor E”E|E|
File Edit Help

BE o~ 7

7 System Property alle
- SpTET—— Compute Automatically [Edt |
Connected Nes FlexRay Channells) A& B
B hode! ||Minimum Cammunication Period [us] 1000
: -5 Node?2 ||Maximum Communication Period [us] | 10000
I Sender Modules ||Minimum Frame Size [bytes]]
= TB.._N-?d':JSde ||Maximum Frame Size [bytes] 16
5 Placed Modules [Hurer ot Coldt Start attempts [2-31] | 31
_g-} Sender ||Numher of Minisiats 10
= 7 Connected Clusters ||Ma><. &ctive Stars in Path 1
gl'r CommunicationBus ||Imp0r‘t FIEEY File
B'"E"ND"?SCE(& Mot [Expart FIBEX File (ame oriy)
g} Recaiver Expott FIBEX, Version 20
=k Connected Clusters
gl'r CommunicationBus
=[5 Modules
CI-} Receiver
H-5 Sender
Cluster | FlexRay |

Figure 7. TDL:VisualDistributor user interface

next section contains a detailed overview of the code generation process and the
complete TDL tool chain which is controlled by the TDL:VisualDistributor.

2.7. TDL Tool Chain

The previous sections explained the TDL Compiler and the TDL Machine as well as
the two front-end visual tools TDL:VisualCreator and TDL:VisualDistributor. All these
are core parts of the TDL tool chain which we will look at in detail in this section and
explain how code generation by the click of a button is realized. As pointed out
above, the TDL Compiler does not take any platform-specific information into
account. This information is contained in the so-called glue code, which is platform-
specific and is required in order to obtain a functional TDL system. All tool chain
components and tools are implemented in Java 1.5, whereas generated the glue
code can be in any language or format which a target platforms requires.

In short, the glue code comprises all code and information which is needed to
execute TDL modules on a potentially distributed platform. What it actually contains
highly depends on the specific target platform. When for example an operating
system which includes a file system is used, it is possible that the TDL Machine
directly reads and interprets the E-Code file. On a single node system, all that needs
to be done then to get a working TDL system is to ensure the task functionality code
is executed by the operating system's scheduler at the proper time instants. Without
a file system, E-Code must be represented for example as C code. Distributed
systems however require extra glue code for the initialization and utilization of the
communication system connecting the nodes.

Timing Definition

Language (TDL) 31

Apart from the di
basic tool chain

fferent requirements of individual platforms, Figure 8 sketches the
elements which are required for the code generation for every

MATLAB/ | TpL:VisualCreator TDL:VisualDistributor
Simulink
! | |
[}] [}
[} | [} P
[} | |
v \4
Functionality Module Distributor data per system
Code TDL Code

data per node

\ 4
TDL Compiler Q

data per module

\ 4 \ 4

E-Code

rocessing ste
Abstract P g step

Syntax Tree data flow

-_—————m e - - e e e e e e, e, —-—-—-

1
1

vy | A 4 A 4
1

1
1
1
. .
. Comm Scheduler |« schedulability check R
' _ 1| Node Platform
1 | Comm Platform Communication | Plug-in
: g i) "l Schedule L
! 1
! !
'\\ for distributed systems)
A 4 A 4
TDL Runtime System Node Module
(TDL Machine & Glue Code Glue Code
Comm Layer) T T
A 4 \ AR 4
> Target
> Platform

Figure 8. TDL tool chain overview

32 Timing Definition Language (TDL)

potentially distributed TDL system. On top, we have the TDL:VisualCreator which can
be used to create the code of TDL modules and MATLAB/Simulink which optionally
generates the corresponding module functionality code. The TDL:VisualDistributor
acts as an editor for platform-specific details of modules and nodes, as well as for the
mapping of modules to nodes. Furthermore, it controls and coordinates all entities of
the TDL tool chain. These three tools are optional (indicated by the dashed arrows) in
the sense that it is also possible to provide TDL modules, functionality code, and
distributor model in textual form and run the whole code generation process by using
the TDL:VisualDistributor in batch mode.

The first processing step is the invocation of the TDL compiler which compiles all
modules of the system and creates one E-Code file per module. Note that an E-Code
file does not only contain E-Code instructions, but also information on drivers,
guards, and asynchronous activities, among others. In addition, the TDL compiler
provides the abstract syntax tree (AST) to the communication and node platform
plug-ins. Just like binary E-Code files, the AST also contains all information of a
compiled TDL module, but in the form of Java objects in order to speed up and
simplify the interaction between tool chain entities.

If the TDL system consists of more than one node, those nodes must be connected
by some type of communication network. In such a case, a network schedule is
generated by the Comm Scheduler. It analyzes the modules and determines the
communication requirements between nodes by considering the module to node
mapping found in the distributor model. Specific communication protocols are
supported via the Comm Scheduler plug-in, which takes properties such as the frame
layout and speed of the protocol into account. TDL specific communication
information is written to a file called Comm Schedule. This data consists for example
of the exact mapping of TDL output ports to communication frames by using so-
called dynamic multiplexing. This scheduling approach allows the creation of a static
schedule for a TDL system whose modules are able to change modes dynamically
and independently. It is explained in detail in section 4.3. To ensure the created
schedule leads to a schedulable system overall, the Comm Scheduler interfaces with
the Node Platform plug-in to check whether it is able to find a corresponding task
schedule on basis of the timing of the communication frames. This approach avoids
that a communication schedule is generated for which eventually no task schedule
can be found.

In contrast to the Comm Scheduler, which is called once per communication bus, the
Node Platform plug-in is called once for every node in the system. It is also possible
that different types of platform plug-ins are invoked in case the system consists of a
set of heterogeneous nodes. The purpose of a Node Platform plug-in is to generate
glue code which allows the execution of a TDL system on a target platform. It uses
configuration properties from the distributor model, the abstract syntax tree of all
modules and the communication schedule provided by the Comm Scheduler in case
the system is distributed. The generated glue code consists of module and node glue
code. For distributed systems, the glue code also comprises so-called stub modules
which act as a remote instance of a module when it is imported by another module
on a remote node.

Apart from corresponding platform plug-ins, a TDL Runtime System must be
implemented in order to support specific node and communication platforms. It
consists of the TDL Machine, which ensures the proper timing of the system
according to the LET semantics, and the TDL Comm Layer, which handles
communication between TDL modules if they are located on different nodes of a
distributed system. In contrast to the glue code, the TDL Runtime System is static
code, i.e. it does not depend on concrete TDL modules.

Timing Definition Language (TDL) 33

Now we have all building blocks for a complete TDL system, namely the module
functionality code, module E-Code, the TDL Runtime System and the module and
node glue code. A final processing step might be necessary to integrate all these
elements for execution on a platform, e.g. compilation and linking on C-based
platforms.

2.8. Related Work

This section compares the TDL language and tools to related approaches for the
design of distributed real-time systems, which employ different with different models
of computation.

Giotto

As already pointed out above, TDL inherits its basic concepts, most importantly the
Logical Execution Time abstraction, from the Giotto language [3]. However, TDL
extends Giotto by a number of features. These include a more convenient syntax,
more control over the timing of periodic activities by the introduction of slot
selection, and the ability to update actuators right after the completion of a task (so-
called task sequences). Further notable extensions are (1) the addition of a
component model by means of the module construct and (2) the integration of
asynchronous activities. The latter is especially significant as Giotto only allows the
specification of purely time-triggered activities, while TDL adds support for event-
triggered activities. Apart from the listed language related improvements, a full-
fledged tool chain exists for TDL, which features graphical modeling tools, simulation
support and code generation for distributed systems. The TDL tool chain enables the
application of Giotto concepts in real-world industrial projects.

xGiotto

xGiotto [4] is, as the name already implies, an extended version of Giotto. Most
importantly, it adds an implementation language for the body of a task and
asynchronous event handling by means of a new syntax for expressing time-
triggered and event-triggered activities.

Adding a new language for the functionality code significantly increases the
complexity of xGiotto and its tool chain. It is not clear to us what the advantage of
this extension for a real-time system is, given that it is supposed to be compiled into
so-called F-code, which is an instruction set for a virtual stack machine that needs to
be interpreted at run-time.

The new syntax is based on a mechanism called event scoping. An event scope (also
called a reaction block) defines the actions to be taken in a given time span which
will be terminated after a specified time or by the occurrence of a specified event.
xGiotto builds on the assumption that asynchronous events reoccur only after a
certain waiting time. Event scopes may be nested and, by means of special
statements and options, they allow a variety of patterns to be specified for the
activities inside an event scope. Besides some exceptions with non-harmonic mode
switches, this includes all possibilities of Giotto programs and it adds the execution of
LET-based asynchronous task invocations. Event scoping also separates the LET of a
task invocation from its execution period, which is similar to TDL's slot selection
approach. In fact, many xGiotto examples can be transformed to TDL in a straight-
forward way, including the xGiotto asynchronous activities, which can be expressed
as guarded synchronous task invocations within selected slots. xGiottos's event
scoping syntax looks somewhat verbose and in particular, the timing behavior of an
asynchronous task invocation is hard to read because it depends on all reaction

34 Timing Definition Language (TDL)

blocks within the same container scope as the asynchronous task invocation. In
contrast, TDL sticks more closely to the lean Giotto syntax for specifying
synchronous activities and adds additional constructs for specifying asynchronous
activities.

The handling of events differs between TDL and xGiotto. There is no guarantee when
and if at all an event is handled in TDL whereas in xGiotto the time until an event is
processed is bounded according to the specification of the event scope. Also in
contrast to xGiotto, in TDL there is no LET assigned to an asynchronous activity as
ports are read and written right before and after its execution. TDL's advantage is
that it can also express long-running background tasks for which a reasonable worst
case execution time is not available.

Further notable differences between xGiotto and TDL are the lack of a component
model and that xGiotto is not targeted at distribution. To our knowledge, there is
also no simulation support available for xGiotto.

Hierarchical Timing Language

The Hierarchical Timing Language (HTL) [5] is another language which bases on the
LET abstraction introduced by Giotto. Its name is derived from the ability to
hierarchically refine abstract task invocations at a later point in time. Although this
refinement does not add expressiveness, as refined code can also be expressed by
an equivalent non-refined one, it results in a much more compact representation and
simplifies program analysis and schedulability tests.

A key concept in HTL is the notion of communicators. Those are typed variables used
to arrange time-triggered data flow and are only accessible at specific, periodic time
instants. Communicators define a fixed communication matrix used throughout a HTL
system. The LET of a task results from the communicator instances it reads from and
writes to. This approach allows for decoupling the LET from the execution period of
tasks and also provides support for task sequences. In TDL, these goals are achieved
by slot selection which provides even more flexibility because TDL allows that a task
is invoked several times per mode period and that each invocation specifies its own
LET.

HTL uses modules for parallel composition and as units of distribution in a similar
way as TDL does. However, HTL modules are neither independent nor self-contained
and therefore not truly reusable as they depend on globally defined communicators
and their timing. Furthermore, there is no way to specify asynchronous activities in
HTL.

Synchronous Languages

Synchronous languages base on the synchrony hypothesis, which states that the
output of a system is synchronous with its input. Internal actions are considered to
be instantaneous and also communications are performed via instantaneous
broadcasting, i.e. every computation is assumed to be executed by an infinitely fast
machine and therefore takes zero time. Synchronous languages are designed to
program reactive systems, which are systems that maintain a permanent interaction
with their environment. Synchronous programs react to some stimulus, i.e. events,
by computing some output based on the input and the state of the program, hence
also the term synchronous reactive programming is used to describe this
programming discipline. Prominent examples of synchronous languages are the
declarative, data flow language Lustre [17] and Esterel [18], which represents an
imperative synchronous language with explicit control flow.

Timing Definition Language (TDL) 35

Actual machines for which the ideal synchronous model is realistic do exist, for
example strongly synchronized hardware or VLSI architectures, where internal
actions and communications occur with on clock tick of the system [19]. Typical
implementations however are targeted at asynchronous platforms and only
approximate synchrony by computing any reaction to an event as fast as possible
and before the next event occurs. Obviously, it highly depends on the power of the
execution platform how accurate that approximation is and response time may vary
significantly in practice. Implementing the synchronous model has been proven to
work for single node systems, but it is no longer feasible when additionally the
communication delay of a distributed system is introduced.

In TDL, the synchrony hypothesis is applied only to the TDL Machine, whose
execution is assumed to take logical zero time. It is however not applied to
computational tasks or network communication, which both are considered to be
long running operations with a significant execution time (the LET) that cannot
simply be ignored. The LET abstraction of the so-called timed model does not only
result in value-deterministic systems as the synchronous model does, but also in
time-deterministic ones, as the reaction time of the system does not depend on the
execution platform in any way [20].

Timed Multitasking

Timed Multitasking [21] is another time-centric programming model which aims at
the inclusion of timing properties at the programming level so that they are
preserved throughout the software lifecycle. Out of criticism of the purely time-
triggered Giotto model, which is incapable of handling sporadic events, Timed
Multitasking uses events and deadlines instead of time triggers. Tasks, which are
called actors and communicate between each other via ports, are activated when
their inputs fulfill certain criteria, i.e. when an associated trigger condition such as
the activation of an interrupt is met. However, the results of the task's computation
are only available to other tasks at the task's deadline. Although the triggers of
actors are unpredictable in general, this results in deterministic timing behavior
regarding the reaction time of actors, which is a valuable property for control
algorithm design. When no deadline is specified, an actor's outputs are available
immediately. An actor's execution can be preempted within the interval between the
trigger event and its deadline. The execution time of an actor must be specified, but
it does not necessarily have to be its worst-case execution time (WCET) as for Giotto
and TDL tasks. Due to this fact, but also as for an event-triggered system it is
generally impossible to guarantee that all actors will meet their deadlines, the Timed
Multitasking approach must handle missed deadlines. This is accomplished by so-
called overrun handlers, which are application-dependent and for example can be
used to bring the system into a safe state when a specific actor is nor able to finish
by its deadline.

After specifying all timing properties at design time, the Timed Multitasking model is
compiled to be executed on a specific runtime system. This step is called software
synthesis or code generation and transforms the model into executable code, i.e.
software tasks and interrupt service routines (ISRs). In combination with the runtime
system this code ensures the function and time determinism of the system.

Timed Multitasking has also been extended to support remote communication in
distributed real-time systems, an approach which the authors named Distributed
Timed Multitasking [22]. Distribution is implemented by transmitting the ports
connecting the actors via a communication network using global signals. Although it
is transparent to the individual actors if their inputs come from a local or remote
actor, the timing behavior might actually be different as communication time

36 Timing Definition Language (TDL)

between actors differs depending on whether network or local communication is
required and on what type of network is used.

In contrast to Timed Multitasking, TDL overcomes Giotto's lack of event support by
the introduction of asynchronous activities as described above, but without sacrificing
any of the real-time properties of time-triggered tasks. There is no need for overrun
handling in TDL, as time-triggered tasks are guaranteed to finish in time because
their WCET must be specified and asynchronous activities simply run until their
completion. However, high priority event-triggered tasks must be represented as
time-triggered tasks, for which TDL's slot selection provides more flexibility than for
example Giotto. In distributed TDL systems, it is not only transparent from which
node a port comes from as in Distributed Timed Multitasking, but it is also available
at the exact same time instant independent from whether network communication is
required or not, thus providing complete transparency.

3. TDL Runtime System

The TDL Runtime System enables the execution of TDL modules on a target
hardware platform. As illustrated by Figure 9, it represents a middleware layer
between TDL modules and the hardware platform, which includes the operating
system, hardware drivers, and the communication interface. It thereby abstracts
from concrete platforms and ensures TDL modules are executed according to the TDL
semantics regardless of the target platform.

TDL Modules

TDL Runtime System

Operating Hardware Communication
System Drivers Interface

Figure 9. TDL system layers

Claudiu Farcas also developed a TDL runtime system including a platform abstraction
layer [7], but which lacked event-triggered processing and a modular communication
layer. In contrast, our runtime system allows executing asynchronous activities,
introduces a plug-in concept for the TDL Comm Layer, and improves support for non-
preemptive platforms. Furthermore, we add support for TDL extensions, such as
structured data types, global output ports, slot selection, and the cyclic import of TDL
modules.

Figure 10 depicts a more detailed view of the TDL system components developed for
the C programming language. It shows the TDL Runtime System (indicated by the
boxes with thick borders) and how it is connected to the generated glue code (gray
boxes) and other entities such as hardware drivers, the operating system, and the
functionality code of TDL modules. Note that the file names of generated glue code
files are postfixed with an underscore. The figure shows the include relationships
between entities which represent C header and body files. An arrow pointing to an
entity indicates that it includes the source file or library from which the arrow
originates. The elements inside the dashed bounds are only required for distributed
systems. The developed runtime system is a framework as the TDL Machine calls

38

TDL Runtime System

hooks for drivers, guards and module initialization functions which are accessed
through structures in the module glue code, which represents compiled TDL modules
as C code so that it is not necessary to read E-Code files on embedded platforms.

tdl main
Node glue code

A A A A

[module]
Module glue code

A

tdl async
Async Handler

A

A

[module]

Functionality code

A

A

A

A A

tdl machine

TDL Machine

tdl comm [platform]
Platform-Specific

Comm Layer Plug-ins

A

tdl comm
Comm Layer

Entity A includes

entity B

TDL Runtime Glue code generated
System by code generation
framework

Operating
system

Hardware Communication
drivers drivers
5 for distributed systems /
A | B

Entities only
required for

distributed systems

Figure 10. TDL Runtime System include relationships

A complete TDL system consists of the following entities:

e TDL Runtime System

The runtime system is static code which is used in every TDL system in the
same way and is therefore application- and platform-independent, with the
exception of communication protocol-specific plug-ins to the TDL Comm Layer

TDL Runtime System 39

framework. It is divided into the following parts which we describe in detail in
this chapter:

o

TDL Machine (tdl machine.c/h)

The TDL Machine's main purpose is to interpret E-Code and thereby
guarantee the execution of TDL modules according to the timing behavior
they specify. See section 3.1.

TDL Async Handler (tdl_async.c/h)

The Async handler implements a priority queue for the execution of
asynchronously triggered activities specified in TDL modules. See section
3.2 for details on the synchronization mechanism for the data flow
between synchronous and asynchronous activities and its implementation
in the context of the TDL Runtime System.

TDL Comm Layer (tdl comm.c/h, tdl comm <platform>.c/h)

The TDL Comm Layer framework is only required for distributed TDL
systems and consists of a communication platform-independent part
(tdl _comm) and platform-dependent plug-ins (tdl comm <platform>). It
abstracts from the concrete communication protocol used and provides
functions which transfer TDL ports via a specific communication bus. It is
described in 3.3.

TDL type mapping (tdl types.h)

A file named tdl types.h maps TDL types to C language types so that the
size of every type corresponds to that defined in the TDL language. A
default mapping is provided but it can also be altered for specific compilers
and platforms. The type mapping header file is not shown in the figure
above but it is used by all TDL Runtime System entities and also by the
glue code. The default type mapping is as follows:

typedef unsigned char tdl boolean; //1 bit flag

typedef signed char tdl byte; //1 byte integer
typedef unsigned char tdl char; //1 byte character
typedef short int tdl short; //2 byte integer
typedef long int tdl int; //4 byte integer
typedef long long int tdl long; //8 byte integer
typedef float tdl float; //4 byte floating point
typedef double tdl double; //8 byte floating point

e Glue code

The so-called glue code comprises all dynamically generated C code required
to execute TDL modules on a potentially distributed system. It is specific to the
application (i.e. the TDL modules) on one hand and the platform of the TDL
system on the other. We call the former part of the glue code the module glue
code and the latter the node glue code, which is contained in the TDL main file.
Both are generated by the code generation framework which we introduce in
chapter 1. In the distributed case, the framework takes the module to node
assignment into account and computes a suitable communication schedule.
The code generation framework supports concrete communication protocols
and hardware platforms via a plug-in mechanism.

40

TDL Runtime System

o

TDL main file (tdl main .c)

The so-called main file or node glue code exists once per node. It contains
initialization code for the runtime system and ensures the periodic
invocation of the TDL Machine. In case of a distributed system, it
additionally is responsible for the synchronized startup of the system and
proper time synchronization between nodes during runtime. The TDL main
file must interact tightly with the specific operating system and
communication protocol employed on the platform and is therefore highly
platform-specific.

TDL module glue code (<module> .c/h)

For every TDL module a C file is generated, which contains the modules'
drivers, guards, and runtime data structures so that it can be executed by
the TDL Machine. The TDL Machine operates mostly on the data structures
provided in the module glue code. In case the target operating system
does not incorporate a file system and is therefore not capable of handling
E-Code files, the module glue code also contains the E-Code represented
as C structures. E-Code is stored as an array of structs consisting of an
operation code indicating the E-Code instruction and two arguments,
which is shown in detail in subsection 3.1.1. For distributed systems, the
module glue code also comprises so-called stub modules which act as a
remote instance of a module when it is imported by another module on a
remote node. Furthermore, the module glue code for distributed systems
interfaces with the TDL Comm Layer to transmit port values.

e Other Entities

o

TDL module functionality code (<module>.c/h)

The functionality code exists once per module. It contains the
implementation of tasks, guard functions, sensor getters and actuator
setters. It can be hand-written C code or also generated code from
external tools, e.g. the Real-Time Workshop integrated in
MATLAB/Simulink.

Hardware drivers

These are low-level drivers which enable the interaction with the physical
environment via sensors and actuators. They are typically mapped to TDL
sensors and actuators in the module functionality code or by automatically
generated wrapper code located in the module glue code.

Communication drivers

Communication drivers are used to interface with the communication
infrastructure which interconnects nodes of a distributed TDL system.
Apart from functions to send and receive frames, communication platform-
specific plug-ins to the TDL Comm Layer framework also require functions
for synchronizing the time base of the protocol to the node time base. In
case such functions are not available, which is typically the case with non
time-triggered buses, a TDL Comm Layer plug-in must implement time
synchronization algorithms itself.

TDL Runtime System 41

o Operating System

Operating system functions are typically utilized by the TDL main file in
order to ensure the periodic execution of the TDL Machine and to interface
with hardware interrupts which can be used as triggers for asynchronous
activities.

In section 3.1 we present our implementation of the TDL Machine. Section 3.2
introduces a generic synchronization mechanism for the integration of time-triggered
and event-triggered activities in a real-time system. We also describe its application
in the TDL Async Handler and the required TDL Machine adaptations. As the last part
of the TDL Runtime System, we present the TDL Comm Layer framework in section
3.3. Note that this chapter is solely on platform-independent aspects of the TDL
Runtime system. Details about the prototyping hardware and the corresponding
platform-specific adaptations can be found in chapter 1.

3.1. TDL Machine

The TDL Machine is responsible for interpreting the E-Code of all modules executed
on a node. It therefore represents the core of the TDL Runtime System, as it
orchestrates the timing and data flow as specified in the TDL modules on a concrete
hardware platform. This section describes the implementation of the TDL Machine for
our C runtime system, whereas the details of E-Code interpretation were already
discussed in section 2.4.

There exists only a single instance of the TDL Machine per node, which handles all
modules assigned to this node. For every module the TDL Machine executes drivers,
evaluates guards, interprets E-Code, and updates module runtime information.
Drivers are used in a TDL runtime system to encapsulate port copying operations and
the execution of sensors, actuator and task functionality code.

The TDL Machine is initialized with the TDL modules assigned to a node. For this
purpose, the TDL Machine code provides data structures to represent a module's
modes, drivers, E-Code and runtime data. These structures are utilized in the module
glue code to specify concrete modules and to initialize the TDL Machine. For
performance reasons, we only use static data structures. Execution time is critical
here, as the TDL Machine is logically executed in zero time.

After initialization, the TDL Machine's so-called step function is invoked repeatedly at
a fixed interval to execute all module-related actions to be performed at a specific
time instant. We call its invocation period the step period. It is determined by the
code generation framework which also configures the platform's operating system so
that the TDL Machine is timely executed. The step period is calculated as the
greatest common divisor (GCD) of the periods of all activities which must be
performed for all modes of all modules executed on a node. Every such period the
TDL Machine advances the individual time for each module and checks whether there
is something to do for the currently active mode, i.e. it checks whether the
reactivation time set by the last future instruction did already pass.

Conceptually, the TDL Machine is not responsible for the actual execution of tasks,
but only for ensuring the proper timing of TDL modules by interpreting their E-Code
and by executing sensor and actuator code. However, we optionally included a
simple dispatcher in our implementation as the time instants when the TDL Machine
runs can also be used to execute task functionality code on non-preemptive systems.
For that purpose, a dispatch table is generated which contains information on what
tasks to execute on these time instants. The dispatcher is activated via the compiler

42 TDL Runtime System

flag TDL DISPATCHED, which is also used to alter data types so that the relevant
elements are only enabled when required.

The TDL Machine is implemented in the files tdl machine.c and the corresponding
header file tdl machine.h. Those files include support for distribution and for the
execution of asynchronous activities and also the optional non-preemptive task
dispatcher. Whether distribution support is activated can be selected with the
TDL DISTRIBUTED compiler flag. If TDL DISTRIBUTED is not set the TDL Machine is
configured to run in stand-alone and therefore single node mode without any
communication layer. Otherwise, the TDL Comm Layer is included and used to
communicate with other nodes in a distributed system. In the following three
sections we will describe the TDL Machine's initialization, its step function and the
optional dispatcher in detail.

3.1.1. Initialization

The TDL Machine must be initialized at node startup with a list of modules and a step
period via the function tdl machine init:

void tdl machine init (tdl machine Module** modules,
int nofModules,
long int stepPeriod);

As parameters a pointer to a list of modules, the number of modules and the step
period are passed. The step period is the greatest common divisor (GCD) of all
periods of all actions the TDL Machine has to perform. It is the time that passes
between two invocations of the tdl machine step function.

Upon initialization, the module initialization function in the functionality code
(<module> init()) is called for every module. Then the E-Code interpreter function
is called for every module in order to execute the initialization section of the E-Code,
which is done by executing the code from the first instruction until the first return
instruction. After that the program counter is set to the beginning of the start mode.

The list of modules consists of structures of the type tdl machine Module which
contains all data concerning a module. This includes the E-Code and numerous hook
function pointers e.g. for drivers which are called by the TDL Machine:

typedef struct
tdl machine ECode *ecodes; //pointer to the module E-Code table
int nofEcodes; //number of E-codes in the module E-Code table
tdl machine Mode *modes; //pointer to the modes table of the module
int nofModes; //number of modes in the module
void (*init) (void); //function pointer to module initialization
char (*guards) (int); //function pointer to the guards wrapper
void (*sdrivers) (int); //function pointer to start/stop drivers

//wrapper

void (*drivers) (int); //function pointer to the drivers wrapper
tdl machine RuntimeData *runtime; //module runtime data
long int *taskWCETs; //pointer to list of task WCETs

} tdl machine Module;

The E-Code of a module is represented by means of the following C structure,
containing an operation code and two arguments. Note that we eliminated the need
for a third argument in comparison to earlier implementations [7].

typedef struct {
char opcode;
long int argl;
long int arg2;

TDL Runtime System 43

} tdl machine ECode;

TDL modes are stored using another data structure. For the structure of the optional
dispatch table see subsection 3.1.3.

typedef struct {
int pcBegin; //E-Code entry point of the mode
long int period; //mode period
#ifdef TDL_ DISPATCHED
tdl machine DispatchEntry *dispatchEntries; //dispatch table entries
fendif
} tdl machine Mode;

The runtime data of a module (tdl machine RuntimeData) stores state information
during the execution of a module. Upon initialization, all values are set to 0, with the
exception of the mode, which is set to the index of the start mode of the module.

typedef struct {
int nextPC; //next program counter
long int futureTime; //future time relative to mode period
int repeatCnt; //repeat counter
int mode; //current mode of the module, also used to set start mode
long int time; //time relative to beginning of mode
char eot; //flag to check if emachine encountered a EOT (=NOP (1))
//instruction (end of termination drivers)
#ifdef TDL DISPATCHED
int dispatchTablelIndex; //current index of the dispatch table
fendif
char *tasksActive; //flag for every task; 1 if task is enabled, 0 if
//guard evaluates to false
} tdl machine RuntimeData;

Note that in addition to this runtime data structure, the state of a module also
consists of the current values of its ports. Those are declared in the module glue
code and are not directly accessed by the TDL Machine but via the corresponding
drivers. Ports are initialized by the first E-Code section of a module.

3.1.2. Step Function

void tdl machine step(void);

The function tdl machine step performs all periodic actions of the TDL Machine for
all modules on a node. It must be called exactly every step period. The operating
system must be configured accordingly, which is done in the TDL main file which is
part of the generated glue code. It can for example be implemented via an entry in a
dispatch table, a task that is scheduled periodically or directly via programming a
timer interrupt.

The step function first checks for every module if its future time is already reached.
If that check is positive, it executes a block of E-Code starting at the current position
of the program counter until an eot or return instruction is reached. eot stands for
end of termination drivers and is represented by a nop (1) E-Code instruction. It
indicates that all termination drivers for the current TDL Machine step have been
executed. It is important that all termination drivers of all modules are called first, as
modules might cyclically import output ports from other modules and the termination
drivers are responsible for updating these ports.

Subsequently, the modules are iterated again and all modules whose E-Code
interpretation had been interrupted by an eot instruction are processed until a

44 TDL Runtime System

return instruction is reached. Finally, the individual time of each module is increased
by one step period length.

Support for asynchronous activities requires some specific adaptations to the step
function, which we describe when introducing the TDL Async Handler in section 3.2.

3.1.3. Non-Preemptive Dispatcher

Our C implementation of the TDL Machine includes an optional dispatcher which can
be used to execute task functionality code on non-preemptive platforms. As an
alternative, tasks dispatching can, for instance, also be handled by the operating
system's scheduler. The dispatcher runs as a last step in the TDL Machine step
function when it is compiled into the code by setting the TDL DISPATCHED compiler
flag. It then sequentially executes the task functionality code of modules without any
preemption according to a dispatch table which is generated for every module. An
offline scheduler and a given worst-case execution time (WCET) for every task
guarantee the time safety of this implementation. A notable limitation is that no task
can be executed whose WCET is larger than the step period of the TDL Machine. This
limits the ability to have long running time-triggered tasks and tasks with a short
period coexisting on a node. Note that as an alternative, long running background
tasks can be specified as asynchronous tasks.

The following structure stores dispatch table entries by means of an array in the
mode structure (see 3.1.1), meaning there exists one such table for every mode of a
module. It contains a task ID which is used to execute the appropriate start driver, a
stop driver ID which is executed upon task termination, and a time instant which is
relative to the mode period and indicates the time the task is scheduled.

#ifdef TDL DISPATCHED

typedef struct {
int task; //task id (equals start driver id)
int stopDriver; //stop driver id or -1 if none
long int time; //time when task is scheduled

} tdl machine DispatchEntry;

#endif

The TDL Machine maintains an individual mode time (relative to the beginning of a
mode) per module, which is increased by one step period duration in every TDL
Machine step. For every active mode, the dispatcher executes all tasks in the table
which are scheduled within the interval starting at the current time and ending at the
current time plus the step period.

In case of a distributed system, the dispatcher also takes care of sending task output
ports via the communication bus. It does so by calling the TDL Comm Layer function
tdl comm sendFramesWithinInterval (long int interval), which sends all
frames within a given interval starting at the current instant of time. It is called after
every task execution with an interval equal to the WCET of the previously executed
task, so that frames scheduled to be sent while the dispatcher is executing tasks are
processed correctly. After all dispatch tables have been processed, the send function
is called again with the interval that is still left in the step period in order to send all
frames remaining in this step period. tdl comm sendFramesWithinInterval is the
only TDL Comm Layer function that is called by the TDL Machine. The calls are
activated during compilation by the TpL DISTRIBUTED flag using C macros.

TDL Runtime System 45

3.2. Synchronization Mechanism for Asynchronous Activities

This section presents a generic synchronization mechanism for the integration of
time-triggered (alias synchronous) and event-triggered (alias asynchronous)
activities. If such activities exchange information among each other, the data flow
must be synchronized such that reading unfinished output data is avoided. We
present a /ock-free solution for these synchronization issues that is based exclusively
on memory load and store operations and therefore can be implemented efficiently
on embedded systems, as these operations are provided by every CPU in hardware.
Consequently, our approach does not need any operating system support such as
monitors [23] or semaphores [24] and thereby avoids dynamic memory operations
and the danger of deadlocks and priority inversions. There is also no need for
switching off interrupts and the solution also works in a shared-memory
multiprocessor system where the time-triggered and event-triggered activities are
performed on separate CPUs. Our approach keeps the impact of event-triggered
activities on the timing of time-triggered activities as low as possible. For more
information on non-blocking synchronization techniques refer to [25] and [26].

We already motivated and described the integration of asynchronous activities in the
TDL language in section 2.5. Throughout this section, we show the application of our
synchronization algorithm in the context of the TDL Async Handler, which is part of
the TDL Runtime System and is implemented in the files tdl async.c and
tdl async.h. Furthermore, we describe required extensions to the TDL Machine.
How outputs of asynchronous activities are communicated to other nodes of a
distributed system is presented in section 3.3, which is on the TDL Comm Layer
framework. Aspects which are specific to the target platform, such as the realization
of the background execution of asynchronous activities and the integration of
hardware interrupts, are discussed in chapter 1.

It is important to note that our lock-free synchronization approach is not focused
entirely on TDL, but rather uses the TDL language as an example for a language
supporting the integration of synchronous and asynchronous activities. It can also be
applied to other time-triggered systems that need to be extended with asynchronous
activities. A generic description of the approach has been published in [27].

3.2.1. Asynchronous Activities

We assume that time-triggered activities have the highest priority in a dependable
real-time system. The runtime system executes a pre-computed schedule and reads
inputs and writes outputs at well-defined time instants, which are synchronized with
a global time base such as the clock of a time-triggered bus system. There is always
a distinguished time base which drives all time-triggered activities and that is why
they are also called synchronous activities.

Asynchronous activities must not interfere with the timing properties of synchronous
activities. This is achieved by running asynchronous activities in a thread with lower
priority than synchronous activities. However, things get more complicated when
synchronization of the data flow is involved, as we describe below.

TDL supports three kinds of synchronous activities. Task invocations and actuator
updates also give sense when triggered asynchronously and should therefore be
supported. Mode switches however affect the time-triggered operation of a module
and are therefore not supported as asynchronous activities.

46 TDL Runtime System

> 1. 2. 3. f—>»
H
> read % execute $ write —»

O jnternal port copy —» data flow

Figure 11. Assumed task model

An asynchronous task invocation consists of (1) reading input data (also called input
ports), (2) execution of the task's body, and (3) writing of output data (also called
output ports). There may be other asynchronous activities as well (e.g. setting of
actuator ports) but with respect to synchronization issues, they do not introduce new
problems because they can be seen as a special case of a task invocation. Figure 11
shows the task model that we assume.

The execution of a task's body is independent of the environment if input reading
and output writing are separated from the implementation. Therefore we assume
that internal copies of all input and output ports are maintained by the system. The
task's body operates exclusively on these internal port copies.

Reading of input data may involve a sequence of memory copy operations that could
be preempted by a hardware interrupt or by a time-triggered operation, which has
higher priority. Therefore we need to synchronize input data reading with the rest of
the system such that all input ports are read atomically.

Like input data reading, writing of output data is a sequence of memory copy
operations that could be preempted by a hardware interrupt or by a time-triggered
operation. It needs to be synchronized with the rest of the system such that all
output ports are updated atomically.

Triggers for asynchronous activities

Asynchronous activities may be triggered by different events. We have identified the
following three kinds of trigger events, which are consequently supported in our
extension of TDL:

e Hardware interrupt

A (non-maskable) hardware interrupt has the highest priority in the system
and may thus even interrupt synchronous activities. We must therefore take
care that the impact of hardware interrupts on the timing of synchronous
activities is minimized. Hardware interrupts may be used e.g. for connecting
the system with asynchronous input devices.

e Asynchronous timer

A periodic or a single-shot asynchronous timer may be used as a trigger. Such
a timer is independent from the timer that drives the synchronous activities
because it introduces its own time base. An asynchronous timer may for
example be used as a watchdog for monitoring the execution of the time-
triggered operations.

e Port update

Updating an output port may be considered an event that triggers an
asynchronous activity. We assume that both a synchronous and an
asynchronous port update may be used as a trigger event. In case of a

TDL Runtime System 47

synchronous port update, i.e. a port update performed in a time-triggered
activity, we must take care that the impact on the timing of the synchronous
activities is minimized. Port update events may e.g. be used for limit
monitoring or for change notifications.

Semantics of asynchronous activities

Obviously, the triggering of an asynchronous activity must be decoupled from its
execution. In addition, reading input ports for an asynchronous activity must be done
at the time of execution, not at the time of triggering. Thereby we move as much
work as possible into the asynchronous part and minimize the impact of trigger
events on the timing of synchronous activities, which is particularly important for
hardware interrupts and synchronous port updates.

If multiple different asynchronous activities are triggered, the question arises
whether they should be executed in parallel or sequentially in a single thread. We
opted for the sequential case because (1) on some embedded systems there is no
support for preemptive task scheduling and (2) because data flow synchronization is
simplified when only one asynchronous activity is executed at a time. In practice, we
expect this not to be a severe restriction because time critical tasks will be placed in
the synchronous part anyway.

We assume that asynchronous activities that are registered for execution may have
different priorities assigned. The set of registered events thus forms a priority queue
where the next activity to be processed is the one with the highest priority.

If one and the same asynchronous activity is triggered multiple times before its
execution, the question arises if it should be executed only once or multiple times,
i.e. once per trigger event. We opted for executing it only once because this avoids
the danger of creating an arbitrary large backlog of pending activities at runtime if
the CPU cannot handle the workload. In addition, this decision also simplifies the
mechanism for registering trigger events as will be shown later.

The following list summarizes our design decisions which are key to a simple and
efficient synchronization solution:

e Triggering of an asynchronous activity is decoupled from its execution.

e Reading input ports for an asynchronous activity is done at the time of
execution, not at the time of triggering.

e Asynchronous activities are executed sequentially.
¢ The execution order of asynchronous activities is based on priorities.

e If one and the same asynchronous activity is triggered multiple times before its
execution, it is executed only once.

3.2.2. Threading and Synchronization

Figure 12 outlines the threads involved including their priority and the critical
regions. The time-triggered activities are represented by the TDL Machine thread.
This thread may need further internal threads but we assume that all synchronization
issues are concentrated in a single thread that coordinates the time-triggered
activities. It should also be noted that an asynchronous timer thread could also run
at a lower priority as long as it is higher than the priority of the asynchronous
activities.

48 TDL Runtime System

on interrupt, on timer

hardware interrupts,
async. timer: highest priority

. on port update
synchronous activities

(TDL Machine): high priority
ﬁk
\ 4

ports
A

\ 4

on port update
asynchronous activities (back- P P

ground thread): lowest priority enqueue ()
\ 4

registered events

A

dequeue ()

[] thread [] critical region —» data flow

Figure 12. Threads and critical regions

The following situations that need synchronization can be identified and will be
described below in more details: (1) Access to the priority queue of registered
events. (2) Reading the input ports for an asynchronous activity. This must not be
interrupted by the TDL Machine. (3) Updating the output ports of an asynchronous
activity. This must be finished before the TDL Machine uses the ports.

The Priority Queue of Registered Events

As mentioned before, asynchronous events are not executed immediately when the
associated trigger fires but need to be queued for later execution by the background
thread. Since asynchronous events may be associated with a priority, we need a data
structure that allows us to register an event and to remove the event with the
highest priority. Such a data structure is commonly referred to as a priority queue. It
provides two operations enqueue and dequeue, which insert and remove an entry
with the property that the element being removed has the highest priority. A humber
of algorithms exists for implementing priority queues with logarithmic behavior of the
enqueue and dequeue operation. However, in our case it is more important to
minimize the run time of enqueue in order to minimize its impact on the timing of
synchronous activities.

Elements are enqueued when an asynchronous event occurs and the event is not yet
in the queue. As mentioned earlier, an event can be a hardware interrupt, an
asynchronous timer event, or a port update event. Port updates may origin from an
asynchronous task or from a synchronous task that is executed by the TDL Machine.
enqueue Will never be preempted by dequeue, however, enqueue may be preempted
by another enqueue operation.

TDL Runtime System 49

Elements are dequeued by the single background thread that executes asynchronous
activities. This thread may be preempted by interrupts and by the TDL Machine.
Thus, dequeue may be preempted by enqueue operations.

Trigger event | Priority Pending
0 0 true

1 false

2 2 false

3 1 true

Table 2. Array representation of trigger events

As shown in the example in Table 2, we chose an array representation of the
triggerable events because this is both thread safe and provides for a fast and
constant time enqueue operation. We use a Boolean flag per event that signals if an
event is pending. The flag is cleared when an event is dequeued. From that time on
it may be set again when the associated trigger fires. The flag remains set when the
same trigger fires again while the flag is already set. The thread-safe enqueue
operation boils down to a single assignment statement and the dequeue operation
becomes a linear search for the event with the highest priority over all pending
events. Registering an event from a non-maskable interrupt or from a synchronous
port update thereby has only a negligible effect on the timing behavior of
synchronous activities. The linear search in the background thread is expected to be
acceptable for small to medium numbers of asynchronous events (< 100), which
should cover all situations that appear in practice. We chose this priority queue
implementation to achieve the fastest possible run time of the enqueue operation,
which is executed inside time-critical code, and because the performance of the
dequeue operation is secondary as it is executed inside the background thread.

It should be noted that the array representation of the priority queue does not
impose any restriction on the number of events the system can handle. There is one
array element for every trigger and the number of triggers is known statically. Thus,
the array can always be defined with the appropriate size.

The TDL Async Handler implements the priority queue by means of the following C
structure:

typedef struct {
char pending; //flag indicating pending async sequence
int priority; //priority of the async sequence

} tdl _async AsyncSequence;

Upon initialization, a pointer to the array of asynchronous sequences and the number
of entries are passed to the TDL Async Handler:

void tdl async _init (tdl async AsyncSequence* asyncs, int nofAsyncs);

The initialization function is called in the TDL main file, where also the array of
asynchronous sequences, i.e. the priority queue, is constructed and the priority for
every sequence is set. A sample initialization with the data from Table 2 looks like
this:

static tdl_async_ AsyncSequence asyncs[] = {

50 TDL Runtime System

{0, 0}, //{pending, priority}
{0, 2}, //{pending, priority}
{0, 2}, //{pending, priority}
{0, 1}, //{pending, priority}
b
tdl async_init (asyncs, 4);

Apart from the initialization function, the TDL Async Handler provides two functions
for enqueue and dequeue:

void tdl async_enqueue (int index);
int tdl async_dequeue (void) ;

The dequeue operation returns the index of the pending event with the highest
priority and removes it from the priority queue. It returns -1 when no events are
pending.

The background thread for executing asynchronous operations could for example be
a simple infinite loop that runs with lower priority than the TDL Machine thread and is
defined in the TDL main file. For a particular target platform there may be some
refinements with respect to the CPU load, which is increased to 100% by
permanently polling the event queue.

while (1) {
int next = tdl async dequeue();
if (next >= 0) {
executeAsyncSequence (next) ;
}
}

The procedure executeAsyncSequence Iis supposed to execute the asynchronous
activity identified by next. Within its implementation there will be synchronization
issues with respect to reading input ports and writing output ports as described
below. In the following, we will show all aspects of our implementation relevant to
these synchronization issues.

Reading the Input Ports for an Asynchronous Task

While performing asynchronous reading of input ports the following situation may
arise: An asynchronous input port reading involving multiple input ports (or at least
multiple memory load operations) has been started. The first port has been copied.
The second port has not yet been copied but the TDL Machine preempts the
background thread and updates the source ports. When the background thread
continues it would read the next port, which has a newer value than the first port.
Moreover, this situation may in principle occur multiple times when the TDL Machine
preempts the background thread after the second port has been read, etc. We have
to make sure that reading all of the input ports is not preempted by the TDL
Machine. Since asynchronous activities don't preempt each other, we know that there
can only be one such asynchronous input port reading that is being preempted.
Therefore we can introduce a global flag that is set by the TDL Machine in order to
indicate to the background thread that it has been preempted. The background
thread then has to repeat its reading until all of the ports are read without any
preemption. The following code fragments outline our C implementation.

Asynchronous port reading within executeAsyncSequence uses a loop in order to
wait for a situation where input port reading is not preempted by the TDL Machine.
Therefore, our solution does not qualify as a wait-free non-blocking algorithm [25]. It
should be noted, however, that (1) starvation cannot occur in the TDL Machine and
(2) in practice it does also not occur in the background thread because even in the

TDL Runtime System 51

unlikely case that the TDL Machine's schedule reserves 100% of the CPU, this refers
to the worst case execution time, which typically will not always be required.

do {
tdl machine executed = 0;
//copy input ports

} while (tdl machine executed);

The relevant TDL Machine code, which is placed in the central procedure of the TDL
Machine (tdl machine step) looks like this:

void tdl machine step (void) ({
tdl machine executed = 1;
//perform operations for this time instant

}

Consequently, the flag is added as an external variable in the TDL Machine header
file tdl machine.h, so that it is accessible by the background thread:

extern char tdl machine executed;

Updating the Output Ports of an Asynchronous Task

In the case of asynchronous output port updates the following situation may arise:
An asynchronous output port update involving multiple output ports (or at least
multiple memory store operations) has been started. The first port has been copied.
The second port is not yet copied but the TDL Machine preempts the background
thread and reads both output ports. Now one port is updated but the second is not.
Since this interruption cannot be avoided, we must find a way for proper
synchronization.

Since we assumed earlier that updating the output ports is separated from the
implementation of a task, we can encapsulate the output port update operations of a
task in a helper procedure that we call the task's termination driver. Since
asynchronous activities don't preempt each other, we know that there can only be
one such termination driver being preempted and it suffices to make that very
instance available to the TDL Machine by means of a global variable. Whenever the
TDL Machine performs its next step, it checks first if a termination driver has been
interrupted. If so, it simply re-executes this driver! This means that the driver may
be executed twice, once by the background thread and once by the TDL Machine.
This is only possible if the driver is idempotent and reentrant, i.e. its preemption and
repeated execution does not change its result. Fortunately, termination drivers have
exactly this property because they do nothing but memory copy operations and the
source values are not modified between the repeated driver executions. The source
values are the internally available results of the most recent invocation of this
asynchronous task and only a new task invocation can change them. Such a task
invocation, however, will not happen because the background thread executes all
asynchronous activities sequentially.

It should be noted that the property of idempotency does not hold for copying input
ports as discussed in the previous subsection because a preemption by the TDL
Machine may alter the value of a source port that has already been copied. This
means that we need two ways of synchronization for the two cases.

It should also be noted that setting the termination driver identity must be an atomic
memory store operation. If storing e.g. a 32 bit integer is not atomic on a 16-bit
CPU, an additional Boolean flag can be used for indicating to the TDL Machine that a
driver has been assigned. This flag must be set after the assignment of the driver's

52 TDL Runtime System

identity. If this initial sequence of assignments is preempted, the TDL Machine will
not re-execute the driver and that is correct because the driver has not yet started
any memory copy operations.

The following C code outlines the implementation of asynchronous task termination
drivers and the corresponding code in the TDL Machine. Setting, testing and clearing
the driver identity may vary between target platforms. Our implementation uses a
function pointer to the drivers of a module (tdl machine asyncDrivers), an ID
(tdl machine asyncDriverID) to identify a specific termination driver and a flag
(tdl _machine asyncPending) indicating a pending termination driver. This requires
the following external variables in tdl machine.h:

extern char tdl machine asyncPending;
extern int tdl machine asyncDriverID;
extern void (*tdl machine asyncDrivers) (int);

An example task termination driver of a specific TDL module with index T may look
like this:

void module drivers (int id) {
switch (id) {

case T: //termination driver for async task T
tdl machine asyncDriverID = T;
tdl machine asyncDrivers = module drivers;
tdl machine asyncPending 1;
//perform memory copy operations

tdl machine asyncPending = 0;
break;

}

The relevant TDL Machine code tests if a driver is pending and executes it if
necessary. Including the tdl machine executed flag introduced previously the code
looks like this:

void tdl machine step (void) ({
tdl machine executed = 1;
if (tdl machine asyncPending) {
tdl machine asyncDrivers (tdl machine asyncDriverID);

}

//perform operations for this time instant

}

It suffices to clear the flag indication a pending termination driver at the end of the
termination driver itself. There is no need to do it after
tdl machine asyncDrivers() in tdl machine step because the driver's re-
execution will clear it anyway.

The resulting runtime overhead for supporting asynchronous operations in the TDL
Machine is the assignment of the tdl machine executed flag and the test for the
existence of a preempted asynchronous task termination driver, which is acceptable
because this happens only once per TDL Machine step. In case of preempting such a
driver the time for re-execution must be added. When a port update trigger is used,
then the enqueue operation is also a small constant time overhead that affects the
TDL Machine. There is no other runtime overhead for integration of event-triggered
activities in the TDL Machine.

TDL Runtime System 53

3.2.3. Quantitative Analysis of Runtime Behavior

In order to show the feasibility of the proposed synchronization mechanism, we
analyzed its runtime behavior on four different platforms. The measurements were
conducted using a CPU timer to count clock cycles and by setting a digital output to
high during an operation and measuring the duration with a digital oscilloscope.
Table 3 shows the results for various operations. The platform named MicroAutoBox
uses a PowerPC 750FX CPU running at 800 MHz and the Microtec C compiler version
3.2 with optimization level 5. The platform runs the dSPACE Real-Time Kernel as its
operating system. The SHARC platform uses an Analog Devices SHARC ADSP-21262
CPU running at 200 MHz and the VisualDSP++ C compiler version 5.0 with maximum
optimization level. The platform named ARM uses an ARM7 TDMI CPU running at 80
MHz and the GNU C compiler with optimization level 2 and runs without an operating
system. The platform named RENESAS uses a Renesas M32C/85 CPU running at 24
MHz and the GNU C compiler version 4.1 with optimization level 3. The platform runs
the Application Execution System (AES) provided by DECOMSYS and executes the
programs from read-only memory, which slows down the execution. This system
does not support external interrupts for user level programs.

Platform (MHz) Interrupt Port Update | dequeue N
MicroAutoBox (800) 420 8 11 *N + 60
SHARC (200) 1030 72 30* N + 110
ARM (80) 700 200 287 * N + 500
RENESAS (24) N.A. 1200 790 * N + 2500

Table 3. Measurement results [nanoseconds]

The column Interrupt shows the time needed for an external hardware interrupt
trigger, which includes the interrupt handling overhead and the engueue operation.
The column Port Update shows the time needed for a synchronous port update
trigger, which consists only of the enqueue operation. The column dequeue N shows
the time needed for the search for the next event to be processed as a linear
function of the array size N. All timings are given in nanoseconds.

The values shown in the columns Interrupt and Port Update are critical for the timely
execution of synchronous operations as they impose an overhead that may affect the
TDL Machine. Even on the slowest platform the required time is only slightly above
one microsecond. In comparison with the ARM platform, the Interrupt time for
MicroAutoBox shows that the operating system introduces a significant overhead.

The values in the column dequeue N only affect the background thread and are not
visible to the TDL Machine. On the slowest platform a time of 81.5 microseconds
results for N = 100, which means that response times in the range of milliseconds
can easily be achieved for asynchronous operations. With regard to the CPU clock
speed, the SHARC platform has the best performance for the dequeue operation.
This is due to the compiler which efficiently optimizes loops for parallel execution.

3.2.4. Related Work

The xGiotto language [4] also aims at the integration of time-triggered and event-
triggered activities. Its compiler is supposed to perform a static check for the
absence of race conditions, which occur when a port is updated multiple times at the

54 TDL Runtime System

same logical time instant. Due to the specific design of xGiotto, a precise check is
possible, but not in polynomial time. Therefore, only a conservative check is done in
the compiler. We do not need such a check at all as we defined appropriate
semantics for event-triggered activities and use appropriate synchronization
mechanisms for their integration into a time-triggered system. Furthermore, the
schedulability analysis is also expensive in xGiotto as it involves solving a two-player
safety game. For TDL programs the check is only slightly more complicated (due to
slot selection) than for Giotto, for which it can be done by a simple utilization test in
polynomial time [28]. Note that asynchronous activities are not taken into account in
this test, and need not be taken into account, as TDL provides no guarantees for
their execution.

RT-Linux [29] is an extension of the Linux operation system which adds a high
priority real-time kernel task and runs a conventional Linux kernel as a low priority
task. Its interrupt handling mechanism is similar to what we propose for the event
queue as all interrupts are initially handled by the real-time kernel and are passed to
a Linux task only when there are no real-time tasks to be run. Our approach is
analogous, as the only immediate reaction to an interrupt is its registration in the
priority queue so that it can be processed later when no time-triggered activity is
executed.

In [30] a non-blocking write (NBW) protocol is presented. The writer is executed by a
separate processor and is not blocked. It updates a concurrency control field (CCF)
which indicates whether it currently writes data to a shared variable. The reader uses
the CCF to loop until no write operation is executed while it reads from the shared
data structure. This relates closely to our synchronization strategy for reading input
ports for an asynchronous activity. In our case the writer would be the TDL Machine
which is not blocked.

A comprehensive overview of the field of non-blocking synchronization can be found
in [26]. Among other techniques, it also describes a so-called roll-forward
synchronization approach by means of a helper function, which looks similar to the
one we used for synchronizing output port writing.

3.3. TDL Comm Layer Framework

The TDL Comm Layer framework is responsible for the transparent distribution of
port values across the communication system of a distributed TDL system. It
provides functions for time synchronization, for reading and writing messages to
frames and for sending and receiving frames on a communication bus. The Comm
Layer is divided into a generic part, which is implemented in the file tdl comm.c and
the corresponding header file tdl comm.h, and communication platform-specific
plug-ins, implemented in the files tdl comm <platform>.c and
tdl comm <platform>.h. Note that the platform-specific functionality is not only
specific to a concrete communication bus, e.g. FlexRay, but also to a concrete
hardware platform, as typically different communication drivers and controllers are
used.

As already laid out in section 2.3 on transparent distribution, the basic idea for
communication in LET-based systems such as TDL is to transfer values inside the LET
of the sender task. The TDL Runtime System implements this by means of a so-
called stop driver, which is executed after task termination and interfaces with the
TDL Comm Layer. On the receiver node, we use the concept of a stub module. It acts
as a local representation of a module which is executed on another node. Stub
modules can be seen as primitive modules which only consist of ports and a simple
E-Code which solely executes termination drivers. The TDL Comm Layer ensures that

TDL Runtime System 55

- -

Nodel e Node2 RN
i X
Sender Sender .| Receiver
module stub module “] module

A

] logical data flow
network connection

»

physical data flow

Figure 13. Stub module data flow

transmitted port values are copied to internal task output ports of the stub module.
Afterwards, the appropriate termination drivers are executed so that the public task
output ports are updated and then made available to other modules according to the
LET semantics, i.e. at the end of the LET of the task which produced the ports on the
remote node. Figure 13 illustrates how a stub module handles the data flow between
the Sender and Receiver modules from the producer-consumer example we
introduced in section 2.2.

To illustrate how the TDL Comm Layer framework handles the transmission of port
values, we take yet another look at the producer-consumer example. In the
following, we describe step by step what happens when the public output port o of
the Sender module is transferred from Nodel to the Receiver module on NodeZ2.
Figure 14 is a zoomed version of Figure 4, including annotations of when the steps
listed below occur. The list presents an overview of the TDL Comm Layer functions
involved, which we describe in detail throughout this section.

1) The task produce that produces output port o is executed by the TDL Runtime
System on Nodel, on which the module Sender is executed. Its physical
execution time is indicated by the black box in Figure 14.

2) At the end of task execution, the task stores its output in an internal task
output port, which we call 0jterna. Upon task termination, the stop driver is
executed. It puts all output ports of a task into a TDL frame buffer, together
with a tag identifying the module, mode, and task invocation it came from. In
our case, the internal port 0j,ernar @and a corresponding tag is written to the
frame buffer via the functions tdl comm putTag and tdl comm putInt.

3) The buffered frame is sent via the communication network by using the TDL
Comm Layer plug-in function tdl comm sendBuffer. This is triggered by the
TDL Machine dispatcher (see section 3.1.3) on Nodel by calling
tdl comm sendFramesWithinInterval, which triggers the sending of all
frames scheduled within a specific time interval. The function must be is
called in time, i.e. before the corresponding frame is scheduled to be sent on
the network.

4) The function tdl comm sendBuffer calls the communication platform-specific
function which actually sends the content of the frame buffer via the
communication network. As a result, the frame is transferred via the network.

56 TDL Runtime System

communication
1 window
I I
«LETOMS ——>
: 1 j
produce produce t

I i ;
i 1) L 2) local

buffer
3)

communication
bus

Receiver

local
buffer

) \ 4
'
'
'

consume

1
]
]
1
I/
S

LET 10 ms

6)

v

Vv

Figure 14. Transmission of a port value via the network

5) On Node2 the frame is received by tdl comm receiveFrames right before
another step of the TDL Machine is executed. This function in turn calls the
platform-specific function tdl comm receiveBuffer, which fills the
corresponding buffer with data received from the communication bus. Upon
reception, tdl comm receiveFrames calls the message decoding function
(decodeMessage, part of the generated glue code in the TDL main file) with
the tag and the frame as parameters. The decoding function writes all ports
contained in a message to the internal ports of the stub module. In our
example, the transmitted port value is written to port 0jytema Of the Sender
stub module by using tdl comm getInt.

6) The TDL Machine on Node2 executes the termination driver in the E-Code of
the Sender stub module, which copies Ojnternar to the corresponding public
output port 0. This happens at the same point in time as the execution of the
termination driver on Nodel. As a consequence, port o is available to other
modules at the end of task produce's LET, regardless of where the modules
are located. This fact exhibits the notion of transparent distribution.

Note that our implementation requires the TDL Machine to execute the stub modules
with the same period as the original module. On the node that executes the stub
module, this might shorten the step period of the TDL Machine, which is calculated as
the greatest common divisor (GCD) of all periods of all actions the TDL Machine has
to perform. In case of using the non-preemptive scheduler described in section 3.1.3,
this results in a tighter constraint for the maximum worst-case execution time
(WCET) of tasks on this node, as the WCET must not exceed the TDL Machine's step
period to achieve a schedulable system.

TDL Runtime System 57

TDL Ports with tags

tdl comm put [TDLType] () tdl comm get [TDLType] ()

TDL Comm Layer frame buffers

tdl_comm_sendBuffer () 4(j> tdl comm receiveBuffer ()

Communication protocol

Figure 15. TDL Comm Layer frame buffers

Communication Buffers

To increase the portability of the TDL Comm Layer framework, we introduced an
abstraction which uses individual buffers for every communication frame. The generic
part of the TDL Comm Layer packs and unpacks TDL ports to those buffers. This is
done by adding a message tag to every set of ports originating from a task
invocation so that the receiver can identify by which task in which mode and by
which module it was produced. The message tag is part of a mechanism we call
dynamic multiplexing. It allows the creation of a static schedule for TDL systems
whose modules are able to change modes dynamically and independently (see
section 4.3.1). The transmission and reception of the communication buffers via a
concrete communication protocol is handled by platform-specific plug-ins to the
framework. Figure 15 illustrates how the communication buffers are used along with
the names of the corresponding TDL Comm Layer functions used to access them.

The C implementation of the communication buffers consists of an array of pointers
to character arrays of variable lengths, which conserves space by using only the
required number of bytes for each buffer. The buffers are initialized in the TDL main
file and are therefore declared as external.

extern tdl char* tdl comm buffers[];

3.3.1. Initialization
The TDL Comm Layer framework is initialized by the following function:

void tdl comm init (tdl comm Config* config);
The config struct contains the following data structures:

typedef struct {
long int stepPeriod; //step period of the node
long int busPeriod; //bus period of the cluster
tdl comm Frame* frames; //array of frames
int nofFrames; //number of frames
char tagSize; //size of the message tag
tdl comm FrameEntry* frameSendEntries; //pointer to array of frame
//send entries

58 TDL Runtime System

tdl comm FrameEntry* frameReceiveEntries; //pointer to array of
//frame receive entries
void (*decodeMessage) (int, tdl comm Frame); //function pointer to
//message decoder funct.
} tdl comm Config;

The initialization function keeps a local copy of the configuration pointer and assigns
the correct tag function according to the tag size in the configuration structure, which
can either be 1 byte or 2 bytes.

A TDL frame is represented by a struct containing the index of the buffer for the
frame data, the size of the frame and the current position required for writing
messages to a frame and reading data from a frame:

typedef struct {
int bufferIndex; //index of the buffer of the frame
int tdlFrameSize; //frame size in bytes
int position; //current position in the frame buffer
} tdl comm FrameStruct;

typedef tdl comm FrameStruct* tdl comm Frame;

A frame entry, used for both the list of sent frames and the list of received frames,
contains a frame index and a time when the frame is sent:

typedef struct {

int frame; //frame index

long int time; //latest time when frame must be sent
} tdl _comm FrameEntry;

The message decoder function decodeMessage has a tag as first argument and a TDL
frame as second argument. It handles the content of a frame according to the tag
provided, i.e. it updates the internal ports of the corresponding stub module and also
sets the mode of the stub module.

3.3.2. Frame Handling

This section describes the relevant function for frame access, packing and unpacking
of messages to frames and transmission and reception of frames.

Frame Access

tdl comm Frame tdl comm getFrame (int index);

tdl comm getFrame iS used to obtain a reference to a frame using its index. This
function is needed for example because tdl comm FrameEntry only contains frame
indexes but not references directly. Also other data structures in the runtime system
or the generated glue code refer to frames using the frame index.

Put and Get of TDL types

void tdl comm put<TDLType>(tdl comm Frame frame, tdl <TDLType> data);
void tdl comm get<TDLType>(tdl comm Frame frame, tdl <TDLType>* data);

For every TDL type, which are boolean, char, byte, short, int, long, float, and
double, there are corresponding put and get methods. The data is read or written to
the current position of the frame and subsequently the position is increased by the
size of the data type. With the get functions a pointer is passed indicating where to
store the obtained data.

TDL Runtime System 59

The endianness of the system is tested upon initialization at runtime and is then
taken into account when packing messages into frames, so that the content of
frames sent over the network is always in big endian form. This ensures that systems
can communicate regardless of their endianness.

In order to support reading and writing of structured types, the generated module
glue code contains code that reads and writes those types by breaking them up into
primitive TDL types and calling the appropriate sequence of read and write
operations.

Tag Handling

void (*tdl comm putTag) (tdl comm Frame frame, int tag);

tdl comm putTag Wwrites a tag to the current position of the frame passed as
argument. The function is actually a function pointer which is set to the correct
function according to the tag size specified upon initialization.

There also exists a corresponding getTag function, but it is not visible outside the
TDL Comm Layer as it is only called internally by tdl comm receiveFrames.

Sending and Receiving Frames

void tdl comm sendFramesWithinInterval (long int interval);

tdl comm sendFramesWithinInterval sends all frames contained in the
frameSendEntries list that are within the interval passed. The function maintains a
current time relative to the start of the bus period. This time is increased by the
passed interval and reset when the end of the bus period is reached. The function is
called during tdl machine step (see 3.1.2).

void tdl comm receiveFrames (void) ;

tdl comm receiveFrames receives all frames within one step period according to the
frameReceiveEntries list. It is called just before the invocation of the TDL Machine.
This function calls the decodeMessage function passed during initialization, which
stores all ports contained in the message in the appropriate internal ports of the stub
modules.

3.3.3. Communication between Asynchronous Activities

When asynchronous tasks provide output ports to other synchronous or
asynchronous activities located on another node of a distributed system, these ports
must be communicated via a communication network. We call the network frames
carrying those ports asynchronous frames. Note that if asynchronous activities use
input ports provided by synchronous tasks, no asynchronous frames are necessary.
In such a case, communication is done within the LET of the task which updates the
corresponding port in the same way as when two synchronous tasks communicate
with each other.

In analogy to handling the execution of asynchronous activities in a background
thread, asynchronous frames must be sent in a way so that they do not interfere
with synchronous frames, i.e. data sent by synchronous activities. Depending on the
communication protocol used, this can be done by configuring them as low priority
frames (typically done when using event-triggered protocol which often support
priorities such as CAN) or by assighing them a designated section in the
communication cycle (typically done when using time-triggered protocols such as
FlexRay or TTEthernet).

60 TDL Runtime System

The notion of transparent distribution does not apply to the parts of a TDL system
involving asynchronous activities. Other than for synchronous activities, it is not
guaranteed that asynchronous updates for ports and actuators are performed at the
same point in time throughout a distributed system. Asynchronous ports are
immediately available to modules mapped to the same node but only after network
transmission has finished on remote nodes. Consequently, the fact that distribution
might alter parts of the behavior of the system must be taken into consideration at
design time.

There are no specific TDL Comm Layer functions for asynchronous frames. They are
handled with the same functions as synchronous frames, with the exception that
they are not included in the tdl comm FrameEntry frame lists as their transmission
time is only known at runtime. Consequently, the functions which rely on these lists,
which are tdl comm sendFramesWithinInterval and tdl comm receiveFrames,
cannot be used. Instead, this functionality is implemented directly in the generated
glue code by using the put and get functions to interface with the frame buffers and
the functions to send and receive the buffers. Note that as there are separate frame
data structures for each synchronous and asynchronous frame, the sharing of the put
and get functions does not create any data synchronization issues.

As an example, here is how an asynchronous frame is sent in the start driver of an
asynchronous task invocation. First, the driver executes the task functionality code
and then it puts the task's internal output port into a frame buffer which is finally
sent.

case 0: //start driver for async task Sender.produce
//execute task functionality code
Sender producelImpl (&Sender produce o internal);

{
tdl comm Frame frame = tdl comm getFrame (0);
frame->position=0;
//copy internal task port to the frame buffer
tdl comm putInt (frame, Sender produce o internal);
tdl comm sendBuffer (frame->bufferIndex, frame->tdlFrameSize);

}

break;

On the receiving node, the following function is generated in the TDL main file and
called after the reception of synchronous frames before the TDL Machine step is
executed. After receiving the buffer, the task's internal port is extracted and finally
the termination driver copies it to the public output port of the stub module.

static void receiveAsyncFrames (void) {
{
tdl comm Frame frame = tdl comm getFrame (0);
frame->position=0;
tdl comm receiveBuffer (frame->bufferIndex, frame->tdlFrameSize);
//obtain internal task port from the frame buffer
tdl comm getInt (frame, &Sender produce o internal);
Sender drivers(0); //call termination driver

3.3.4. Platform-Specific Plug-Ins

The platform-specific functionality of the TDL Comm Layer framework is implemented
by means of plug-ins. They comprise functions which handle initialization, sending
and receiving frame buffers and time synchronization on a concrete hardware
platform. This section describes the plug-in interface.

TDL Runtime System 61

A concrete communication platform is initialized with the following function:

void tdl comm init platform(void) ;

Sending and receiving a frame buffer is implemented by the following two functions:

void tdl comm receiveBuffer (int bufferIndex, int size);
void tdl comm sendBuffer (int bufferIndex, int size);

Both functions have parameters for which buffer to send/receive and how many
bytes to send/receive. The latter is used to send/receive the exact humber of bytes
transmitted on the communication bus. For sending the corresponding position of
the frame struct is used and when receiving the expected size of the frame
associated with the buffer is used.

For synchronization of the time base of the communication bus with the time base of
individual nodes, a plug-in must provide additional functions. As the synchronization
algorithms vary considerably between different platforms, there are no function
prototypes in the generic tdl comm.h header file. Instead, the prototypes must be
provided in the plug-in header file tdl comm <platform>.h, so that they can be
utilized in the generated glue code. Chapter 1 describes the implementation of
platform-specific TDL Comm Layer plug-ins for prototyping hardware using the
FlexRay communication bus.

4. Code and Schedule Generation Framework

This chapter presents a code and schedule generation framework for LET-based
systems. It uses TDL as an example language and thus generates glue code suitable
for the TDL Runtime System implemented in C as described in the previous chapter.
It thereby ensures the correct behavior of TDL modules on potentially distributed
platforms. LET-based components, i.e. TDL modules, serve as a unit of distribution
and run in parallel on one or more nodes. The LET abstraction and the resulting
property of transparent distribution lay the basis for efficient automatic code and
schedule generation, as the logical timing specification is used as input for the
software synthesis process. A manual mapping of LET-based components to target
platforms would be error-prone and not effective, as the behavior of the system is
already completely specified by the LET. This fact leaves little room for manual
optimizations, apart from such concerning CPU and memory utilization.
Consequently, the whole LET design flow relies on efficient and reliable automatic
platform mapping, i.e. on the generation of glue code, task and communication
schedules for all target platforms involved whereby the process enforces the LET-
based specification automatically.

For the purpose of code generation we developed a versatile framework which uses a
layered architecture making it flexible regarding support for additional platforms.
Note that the term platform is actually a generic term, ranging from the
programming language and operating system a concrete hardware platform uses to
its specific communication and input/output controllers. Our code generation
framework acknowledges this by the ability of subsequent refinements to the code
generation functionality. As the correctness of the platform mapping is essential for
applying a LET-based development process, our code generation framework
maximizes the reuse of code components to minimize the chance of programming
errors. A less detailed description of the framework has been published in [31].

Figure 16 presents an overview of how the different parts of the framework interact
with each other. The figure is vertically divided into a platform-independent and a
platform-dependent part and horizontally into a cluster and a node level part,
whereby the cluster part is only required for distributed systems. The numbers
indicate the order in which the depicted steps are performed. Code generation is
based on TDL modules and their deployment, specifying which component is
executed on which node. This information is used by the node plug-in to generate
the appropriate code that executes all modules mapped to a node. Node plug-ins are
split into a platform-independent generic part and a platform-dependent subclass
implementing a specific hardware target. The platform-independent Comm Scheduler
however needs the deployment information to generate a list of frames that must be
transferred between nodes. Each frame is assigned a timing window indicating when
it must be transferred via the network. The Comm Scheduler Plug-In is the platform
dependent part of the cluster level and is tailored to a specific communication
protocol. It schedules the frames obtained by the Comm Scheduler and assigns a

64 Code and Schedule Generation Framework

platform-independent | platform-dependent

Comm 2. scheduld frames Comm
Scheduler [»| Scheduler
4. frame'timing Plug-In
5.
Y

Comm

Schedule 3. check

schedulability

TDL Modules &
Module
Deployment

cluster-level

node-level
----------------------------- ¥-—-=-==a
1
Generic Specific !
Node Plug- ki extepds Node Plug- |
X Ins Ins :
] — O IOy — Y
7.
A
Generated
Code

Figure 16. Framework collaboration diagram

concrete timing to them which must be within their timing windows. It can query the
node plug-in by supplying it with a candidate set of frames with assigned timing to
check whether the nodes are schedulable with this set. If it is not schedulable the
Comm Scheduler Plug-In can come up with an alternative set leading to a feasible
node task schedule. This approach prevents that a communication schedule is
produced that eventually is not usable because of restrictions imposed by scheduling
constraints on node-level, such as CPU speed limitations. After a feasible schedule is
found, the Comm Scheduler stores it in a data structure called Comm Schedule which
is subsequently used by the node platform plug-ins to generate code.

The code which is dynamically generated by the framework consists of multiple
parts. Those parts are either specific to or depending on (1) the TDL code of
modules, (2) the concrete target platform, (3) the communication requirements
between TDL modules in a distributed system, or (4) the schedule for a concrete
communication protocol between nodes. Table 4 presents a classification of the
generated code listing typical examples of what kind of code is generated.

Code and Schedule Generation Framework 65

Platform-independent Platform-dependent

Cluster level Generic module Communication schedule for a
communication requirements, | concrete communication
communication windows for protocol obeying frame window
network frames constraints

Node level TDL Runtime System Task schedules, platform-
configuration: Module glue specific invocation of the TDL
code, wrappers for drivers Runtime System, I/0 driver
and guards, E-Code assignment to TDL sensors and

actuators, make file

Table 4. Parts of the generated glue code

The alternative to pre-runtime code generation would be to do all processing on the
nodes itself at runtime. However, this would require numerous dynamic data
structures whose handling contradicts the computing power and the dependability
requirements of typical embedded systems. When distribution is involved it gets even
more complicated as information of the whole system is needed on every node
because the communication schedule must be coordinated globally.

A previous implementation of a runtime system for TDL and corresponding code
generation functionality uses a Platform Abstraction Layer (PAL) based on C functions
[7]. For every platform various functions must be implemented to adapt the runtime
system to a specific operating system. However, its design makes implicit
assumptions about what functionality an operating system provides and therefore it
is not possible to support certain platforms in a straight forward way. In contrast, our
approach shifts the platform abstraction to the level of code generation mechanisms
and thereby enables the adaptation to a significantly broader range of platforms. For
example, it is possible to support multiple programming languages while still reusing
parts of the code generation functionality.

Code generation for distributed systems based on Giotto, a predecessor of TDL, has
been proposed in [32]. The authors also use the basic idea of handling network
communication by scheduling messages within the LET period of its producers.
However, they employ a different workflow as they require that a system integrator
assigns CPU time and network bandwidth before individual components are designed.
The benefit of this strategy is that code can then be generated independently. In
contrast, our centralized code generation process allows more flexibility in case
components are added or changed during development as then the whole code
including the communication schedule is regenerated to accommodate for all changes
in the timing requirements.

Concerning the usage of the framework, typically a graphical front-end harnessing
our code generation framework supports the deployment of components to a
distributed system. Such a tool, as for example the TDL:VisualDistributor presented
in 2.6, also provides configuration options concerning the mapping of sensors and
actuators to concrete hardware devices and other hardware parameters.

This chapter covers our Java implementation of the framework foundations including
basic plug-ins for ANSI-C, whereas the next chapter describes plug-ins for concrete
node and communication platforms. In the following sections we first describe the
framework foundations and then the code generation mechanisms on the node and
cluster level.

66 Code and Schedule Generation Framework

4.1. Framework Foundations

This section introduces the basic framework elements, consisting of interfaces and
(abstract) classes. The framework foundations are not specific to a concrete
programming language or hardware platform. They are the root of the platform plug-
in class hierarchy which represents a plug-in architecture that can be extended for an
open set of target platforms on the node and cluster level. Common features for both
platform types include access to TDL modules and their deployment, unified handling
of platform options and a specified destination directory for storing the generated
code.

ModuleDecl

<<interface>>

Platform
/\
<<interface>> E <<interface>>
CommLayer i CommSchedulerPlugin
<<interface>> E
Scheduler ! CommSchedule
<<interface>> i <<interface>>
NodePlatform ! 5 ClusterPlatform
AbstractPlatform

AsyncDecl

L

___-_____________________l>

AbstractNodePlatform AbstractClusterPlatform

Figure 17. Framework foundation classes and interfaces

Code and Schedule Generation Framework 67

Figure 17 depicts a UML class diagram of the framework foundations (indicated by
the thick borders) including the most important interfaces and classes its elements
refer to. On top is the pPlatform interface which contains basic methods all node and
cluster plug-ins must implement, such as handling platform options, the destination
directory and the passing of TDL module objects. It uses ModuleDecl which
represents a module's Abstract Syntax Tree (AST) as supplied by the TDL compiler.
AbstractPlatform is an abstract class that implements the Platform interface and
provides default implementations which for example store the destination directory
and modules in its instance attributes. The NodePlatform and ClusterPlatform
interfaces extend the Platform interface by methods which node and cluster
platforms must implement. For that purpose, they use a CommLayer communication
layer, a task scheduler scheduler, a communication scheduling plug-in
CommSchedulerPlugin and a communication schedule CommSchedule. Note that
NodePlatform also stores a reference to a ClusterPlatform. In addition to a
number of default implementations, AbstractNodePlatform also provides methods
and attributes for the processing of asynchronous activities. It uses the class
AsyncDecl which represents an asynchronous activity. Finally, the abstract class
AbstractClusterPlatform does not provide any functionality apart from providing a
base class for cluster platforms, which combines the AbstractPlatform class and
the clusterpPlatform interface.

In the following we will systematically describe the framework foundation classes and
interfaces including their attributes and methods in detail.

Interface Platform

<<interface>>
Platform

setModules(modules: List<ModuleDecl>)
setDestDir(destDir: String)

getDestDir(): String

getName(): String

getValidOptions(): String
consumeOptions(options: String[], idx: int): int
emitCode()

Figure 18. Interface Platform

The platform interface (see Figure 18) must be implemented by all classes which
generate code, whether it is node or cluster-specific. The output of a platform plug-in
class should be written to files as expected by the target platform's implementation
of the TDL Runtime System. Platform classes may consume an arbitrary number of
custom options.

void | setModules (List<ModuleDecl> modules)

This function sets the modules to be processed, where modules is a
list of abstract syntax trees (AST) of the modules. The AST
represents a single, compiled module of the system by an object of
the class ModuleDecl (see Figure 19), which is created by the TDL
compiler. It contains the complete information about a module,
including its E-Code, and provides methods to query its data
structures.

68

Code and Schedule Generation Framework

void | setDestDir (String destDir)

Sets the destination directory to be used for all output files a
platform plug-in generates.

String | getDestDir ()
Gets the destination directory.

String | getName ()
Returns the human-readable name of this platform class, which
typically is a detailed name of the target platform.

String | getvValidOptions ()
This returns the valid options for the platform class with one option
per line which may also contain a short comment. If no information
about valid options is available, null should be returned. Examples
for platform options are a -debug flag enabling debug output ora -
node <nodeName> option which passes the name of a node to a plug-
in.

int | consumeOptions (String[] options, int idx)
This method is called for setting plug-in specific options. A plug-in
may consume an arbitrary number of options inside the String array
options. The index idx indicates the first option that might be
consumed by the plug-in, whereas the value the function returns is
the index of the first option that does not belong to the given plug-in
class.
void | emitCode ()

This method generates the platform specific code for all modules set
by setModules(). It is «called after all setters and
consumeOptions ().

Table 5. Methods of interface Platform

ModuleDecl

+ name: String

+ isPublic: boolean

+ imports: ModuleDecl[]

+ ports: List<PortDecl>

+ asyncs: List<AsyncDecl>
+ syncTasks: Set<TaskDecl>
+ ecode: ECodeStruct

+ getConstantsAlphabetical(): ConstantDecl[]
+ getConstantsTextual(): ConstantDecl[]

+ getTypesAlphabetical(): TypeDecl[]

+ getTypesTextual(): TypeDecl[]

+ getPorts(): PortDecl[]

+ getTasks(): TaskDecl[]

+ getModes(): ModeDecl[]

Figure 19. Class ModuleDecl representing the Abstract Syntax Tree (AST)

Code and Schedule Generation Framework 69

Class AbstractPlatform

The abstract base class AbstractPlatform (see Figure 20) implements the platform
interface and provides an empty plug-in, i.e. a plug-in that does not emit any files. It
provides straight-forward implementations for handling the destination directory and
the abstract syntax trees of modules.

The implemented functions setDestDir() and getDestDir() set and get the
destination directory which the class stores in the protected field destbir. The class
also implements the function setModules () which stores the module ASTs in the

AbstractPlatform

+ modules: List<ModuleDecl>
destDir: String

+ setModules(modules: List<ModuleDecl>)

+ setDestDir(destDir: String)

+ getDestDir(): String

+ getName(): String

+ getValidOptions(): String

+ consumeOptions(options: String[], idx: int): int

Figure 20. Abstract class AbstractPlatform

field modules. A default implementation of getName () returns the name of the Java
class. Furthermore, an implementation of consumeOptions () does not consume any
arguments and therefore simply returns the supplied index. Consequently,
getValidOptions () returns null.

Interface NodePlatform

<<interface>>
NodePlatform

getScheduler(): Scheduler

isSchedulable(): boolean
setCommLayer(commLayer: CommLayer)
setClusterPlatform(clusterPlatform: clusterPlatform)
getClusterPlatform(): ClusterPlatform

Figure 21. Interface NodePlatform

The NodePlatform interface (see Figure 21) must be implemented by a class in order
to generate platform-specific code on the node level of a potentially distributed
system. It serves to provide a task scheduler implementing the scheduler interface.
In the distributed case, NodePlatform also provides a communication layer and
associates a node to a corresponding cluster platform. Single-node systems use a
dummy communication layer and null as cluster platform.

70 Code and Schedule Generation Framework

Scheduler | getScheduler ()

Returns the task scheduler to be used for this node
platform. It must conform to the Scheduler interface and
is used to schedule all tasks specified by the modules
assigned to a node.

public boolean | isSchedulable ()

This function is used to check if the task scheduler is able
to find a feasible schedule for the tasks to execute on a
node. For distributed systems it takes into account the
constraints of the communication system, e.g. the
deadline of messages containing a task's ports.

void | setClusterPlatform(ClusterPlatform clusterPlatform)

Sets the cluster platform plug-in object which represents
the communication system a node is connected to in a
distributed system. Its main purpose is to create a global
communication schedule. If no cluster platform plug-in is
set, this node is considered to be a stand-alone node.

ClusterPlatform | getClusterPlatform()
Gets the cluster platform plug-in object.

void | setCommLayer (CommLayer commLayer)

Associates a CommLayer object with this platform object. A
node platform class is supposed to delegate all code
generation functionality concerning network
communication to a separate CommLayer object. This
allows generating code for stand-alone systems and for
distributed systems in a similar way. The communication
layer generates code for the interaction between a node
and the communication system, e.g. code that sends and
receives TDL port values via the network.

Table 6. Methods of interface NodePlatform

Class AbstractNodePlatform

AbstractNodePlatform (see Figure 22) provides a default implementation of the
NodePlatform interface and stores a node name, the associated CommLayer and
cluster platform as an attribute. All specific node platform plug-ins extend this
abstract class. For supporting target specific code generation for asynchronous
activities, we provide some base functionality in the class AbstractNodePlatform. In
particular, it contains a method that prepares auxiliary data structures that are
expected to be required by all node plug-in classes. Note that these data structures
cannot be provided by the TDL compiler via the AST, as asynchronous activities are
handled per node and not per module. Thus, preparing these structures takes into
account which modules are placed on a particular node and which are stub modules,
i.e. imported from a remote node. The TDL compiler provides the involved data
structures (AsyncDecl, QualPortID, FunCall, TaskDecl) as part of the abstract
syntax tree of a module.

Code and Schedule Generation Framework 71

AbstractNodePlatform

+ nodeName: String

+ commLayer: CommLayer

clusterplatform: ClusterPlatform

asyncs: List<AsyncDecl>

asynclnterruptMap: SortedMap<String, List<AsyncDecl>>
+ asyncTimerMap: SortedMap<Integer, List<AsyncDecl>>
asyncUpdateMap: Map<String, List<AsyncDecl>>

asyncGuards: List<FunCall>

asyncTasks: List<TaskDecl>

+ setCommLayer(commLayer: CommLayer)

+ setClusterPlatform(clusterPlatform: ClusterPlatform)
+ getClusterPlatform(): ClusterPlatform

+ isTDLDistributed(): boolean

+ getValidOptions(): String

+ consumeOptions(options: String[], idx: int): int

prepareAsyncTables()

Figure 22. Abstract class AbstractNodePlatform

public String | nodeName
Stores the name of the node, which acts as an identifier
of the node in distributed systems.
public CommLayer | commLayer
This field contains the communication layer being used
and is set by an implementation of setCommLayer ().
protected | clusterPlatform
ClusterPlatform Stores the platform plug-in which handles the
communication between nodes in a distributed TDL
system. Set and get by straight-forward
implementations of setClusterPlatform() and
getClusterPlatform().
protected | asyncs
List<AsyncDecl> Represents all asynchronous event sequences from non-
stub modules on this node.
protected | asyncInterruptMap
Soiteiiflipﬂngegi; Maps all interrupt numbers to the corresponding
tsteasynebec asynchronous event sequences of non-stub modules on
this node.
public | asyncTimerMap
SoiFegipqn;egi; Maps all timer periods to the corresponding
tsteasynebec asynchronous event sequences of non-stub modules on
this node.

72

Code and Schedule Generation Framework

protected | asyncUpdateMap
LMaEiiuangrtiE; Maps all update port triggers to the corresponding
LstsAsyncbec asynchronous event sequences of non-stub modules on
this node.
protected | asyncGuards
List<FunCall> All async guard calls from non-stub modules on this
node.
protected | asyncTasks
List<TaskDecl>

All async tasks from stub and non-stub modules on this
node. Stub modules are included in this data structure
to ensure that terminate drivers of such modules, which
might be executed asynchronously to the TDL Machine,
are properly synchronized.

public boolean

isTDLDistributed ()

This boolean function returns whether this node has an
associated cluster platform and is therefore part of a
distributed system or not.

public int

consumeOptions (String[] options, int idx)

The class AbstractNodePlatform consumes two
options: -node <nodeName> which sets the node name
whose value is stored in the field nodeName and -debug
which activates the debug mode of a plug-in.
Correspondingly, the function getvalidOptions/()
informs about those two options.

void

prepareAsyncTables ()

This function prepares all async data structures as listed
above by iterating over all modules and their
asynchronous sequences. This method must be called
explicitly by subclasses.

Table 7. Methods of abstract class AbstractNodePlatform

Interface ClusterPlatform

<<interface>>
ClusterPlatform

getCommSchedulerPlugin(): CommSchedulerPlugin
setCommSchedule(commSchedule: CommSchedule)
getCommSchedule(): CommSchedule

Figure 23. Interface ClusterPlatform

This interface (see Figure 23) must be implemented by a class in order to participate
in code generation on the level of a cluster. A ClusterPlatform does not itself
perform communication scheduling, but provides a Comm Scheduler Plug-In to the

Code and Schedule Generation Framework 73

Comm Scheduler for the purpose of communication protocol-specific scheduling. This
plug-in maps abstract scheduling data, such as frame windows, to a concrete
communication protocol, e.g. the concrete timing of frames on the network. It is
represented by an object implementing the CommSchedulerPlugin interface and
provided by the method getCommSchedulerPlugin(). The functionality of this
interface and how it is used in the context of communication schedule generation for
a TDL system is described in detail below in section 4.3 on cluster-level code
generation.

Another important function of the ClusterPlatform interface is to provide the Comm
Schedule data structure to node platforms which have a reference to it as already
described above. The class CommSchedule (see Figure 24) contains information on
the assignment of modules to nodes and all data that is transferred between nodes,

CommSchedule

+ clusterName: String

+ commpPeriod: int

+ nodes: CommNode[]

+ asyncFrames: CommAsyncFrame[]
+ taskPorts: CommTaskPort[]
+ ports: CommPort[]

+ members: CommMember([]
+ types: CommType[]

+ tasks: CommTask[]

+ messages: CommMessage(]
+ modules: CommModule[]

+ frames: CommFrame[]

+ isPlacedOnNode(moduleName: String, nodeName: String): boolean
+ getCommMessagesOfModule(moduleName: String): CommMessage[]
+ getlLocalFrames(nodeName: String): CommFrame[]

+ getlLocalFramelD(globalFramelD: int, nodeName: String): int

+ getLocalAsyncFrames(nodeName: String): CommAsyncFramel]

+ getLocalAsyncFramelID(globalFramelD: int, nodeName: String): int

+ getAsyncSenderFrame(nodeName: String, moduleName: String,
taskName: String): CommAsyncFrame

+ getNodelD(nodeName: String): int

Figure 24. Class CommSchedule

i.e. data type and size information of synchronous and asynchronous communication.
It includes several methods to conveniently obtain the data stored in it. After the
communication scheduling process has finished, it is set and get by
setCommSchedule () and getCommSchedule () respectively.

On the basis of the final communication schedule, a cluster plug-in emits code as
required by the protocol it implements, for example a proprietary file specifying the
schedule. Note that it is not always necessary to explicitly output code, as it can be
the case that the communication schedule is encoded in data that is scattered across
the nodes of the distributed system and is therefore part of the generated code on
node level.

74 Code and Schedule Generation Framework

4.2. Node-Level Code Generation

After introducing the framework's foundations, this section is on the generic code
generation facilities on node level. Our code generation framework is not specific to a
certain target programming language. The TDL language report [14] contains so-
called language bindings, which encapsulate programming language specific details
in order to minimize the individual adaptations required concerning the tool chain.
They contain naming conventions and parameter passing rules concerning the
functionality code and specify how TDL types are mapped to programming language
data types. The framework plug-ins adhere to these language binding rules, currently
specified for Java and ANSI-C. This section focuses on embedded systems based on
the C programming language.

The challenge concerning code generation for TDL is to generate code for a variety of
different hardware platforms. The design goal is to come up with a flexible
architecture that allows maximum code reuse when adding support for additional
hardware targets. We decided to use repeated subclassing to achieve this. The
degree of platform dependence increases with every additional inheritance level in
the class hierarchy. The subclassing approach enables a subclass to reuse code
generation functionality code from its ancestor by means of super calls but also to
suppress or modify parts of it by selectively overriding methods.

Figure 25 illustrates a sample hierarchy of plug-in classes by means of a UML class
diagram. The foundation class AbstractNodePlatform as described in the previous
section is on top. It contains methods that must be implemented by every class that
generates code for a specific platform, most notably a method which consumes
specific options, a schedulability check method to test if all modules assigned to a
node are schedulable and a method that triggers the actual code generation. Next in
the hierarchy are the two classes JavaPlatform and CPlatform, which implement
code generation functionality for all platforms that use the Java or C programming
language respectively. JavaPlatform is an experimental plug-in for a Java TDL
runtime system. Apart from the generic platform there are no further plug-ins for
concrete platforms based on Java and also only single-node systems are supported.
CPlatform generates C glue code for the execution of TDL components by the TDL
Runtime System as presented in chapter 3. EmbeddedCPlatform aims at embedded
systems with simple operating systems which typically lack a file system and
therefore the TDL E-Code is represented as C code, which is later compiled and
linked to the executable for the particular node. It also adds task scheduling
functionality by generating dispatch tables for task execution. As examples for
operation system plug-ins we add another two classes. RTLinuxPlatform generates
code for RT Linux [29] which provides a file system and therefore extends CPlatform
directly. One inheritance level below O0OSEKPlatform generates code for the
OSEK/VDX [33] operating system and additional classes which implement common
code generation features used for multiple hardware platforms. The bottom level,
indicated by empty boxes in Figure 25, consists of platform-specific plug-ins that are
tailored to concrete hardware platforms and are discussed in chapter 1. Support for
any additional programming language, operating system or hardware platform
requires adding specific classes that generate the corresponding code at the
appropriate level in the class hierarchy.

Code and Schedule Generation Framework 75

AbstractNodePlatform Abstract
% % platform
CPlatform JavaPlatform Programming
language

[

RTLinuxPlatform EmbeddedCPlatform

f f Operating system &
common features

OSEKPlatform

Figure 25. Node platform abstraction levels

Concrete hardware
platforms

Our philosophy behind generating code for a target platform is to perform as little
computation as possible on the platform itself at runtime. An important goal was to
avoid dynamic memory allocations except during startup. Concerning the glue code
required for TDL modules, all data structures and their sizes are statically known and
space can therefore be allocated statically. This significantly increases determinism
and keeps the space and CPU time overhead of executing TDL modules to a
minimum, which is especially important for embedded real-time systems with low
processing power and high dependability requirements.

In the following we describe the plug-in classes which implement support for
embedded systems programmed in C. The next two sections describe the C Platform
and the Embedded C Platform plug-ins for single-node systems. Afterwards we point
out the differences regarding code generation for stub modules. Finally, we introduce
the communication layer, which acts as an interface to the communication system for
distributed systems. Plug-ins for specific hardware platforms are subsequently
described in chapter 1.

Throughout this section we use the following example TDL application to illustrate
how the generated glue code parts from the platform plug-in classes look like. It
consists of four modules distributed across two nodes. The modules have already
been discussed in chapter 2 and contain the producer-consumer example in the
synchronous (modules Sender and Receiver) and the asynchronous version (modules
AsyncSender and AsyncReceiver). The two sender modules are mapped to Nodel,
whereas the two receiver modules run on NodeZ2.

76 Code and Schedule Generation

Framework

module Sender {
sensor boolean switch uses getSwitch;
actuator int display uses setDisplay;
public task produce {
output int o := 10;
uses producelImpl (o) ;

}

start mode main [period=10ms] {

task

[fregq=2] produce(); // LET = 10ms/2 = 5ms
actuator

[freg=1] display := produce.o; // updated every 10ms
mode

[freg=1] if exitMain(switch) then freeze;

}

mode freeze [period=10ms] {}

module Receiver ({
import Sender;
actuator int display uses setDisplay;
task consume {
input int i;
output int o;
uses consumelImpl (i, o);

}

mode main [period=10ms] {

task

[freg=1] consume (Sender.produce.o) ;
actuator

[freg=1] display := consume.o;

module AsyncSender {
actuator int display uses setDisplay;

public task produce {
output int o 10;
uses producelImpl (o) ;

}

asynchronous {
[interrupt=INTO, priority=5]
produce (); display := produce.o;

module AsyncReceiver {
import AsyncSender;
actuator int display uses setDisplay;

task consume {
input int i;
output int o;
uses consumelImpl (i, o);

}

asynchronous {
[update=AsyncSender.produce.o]

Code and Schedule Generation Framework 77

consume (AsyncSender.produce.o); display := consume.o;

4.2.1. C Platform Plug-In

The class cplatform is intended to act as a foundation emitting C code that is
expected to be needed for every C-based platform. In addition, it provides a set of
useful methods for its subclasses. The class writes three files for every module to the
plug-in's destination directory: A C header file (<module> .h), a C body file
(<module> .c) and an optional functionality code template header file
(<module> template.h). Furthermore, it writes a C main file (tdl main .c) which
exists not per module but only once for every node. Note that all these files
correspond to the requirements of the C TDL Runtime System as described in
chapter 3.

The methods in cplatform and in other framework classes adhere to a naming
convention identifying which code fragment they generate. For example, methods
generating code for the module header files are prefixed with emitH , those for
module body files with emitc and those for the main C file with emitMaincC .
Following this rule, the three methods for the creation of module header files are
named emitH Includes(), emitH Ports(), and emitH Prototypes(). This
separation for example enables subclasses of cplatform to add C includes to the
header file by overriding the emitH Includes () function with a super call and code
that emits additional include statements. Methods can also be overridden without the
super call to suppress parts of the code generation functionality.

C Module Header File

The C header file of a module contains include statements and glue code elements
which must be public, i.e. accessible from outside the module's C code.

e CIncludes (emitH Includes())

Node1/Sender_.h
#include "tdl types.h"
#include "Sender.h"

The included C header files are the TDL type mapping for C (tdl types.h) and
the header file of the functionality code of the module (<module>.h).

e Ports (emitH Ports())

Node1/Sender_.h
extern tdl int Sender produce o; /* public output port Sender.produce.o */

All TDL ports that need to be accessed from outside the module are specified in
the header. These are all global and public output ports of the module's tasks.

e Prototypes (emitH Prototypes())

Node1/Sender_.h

void Sender drivers(int n);
void Sender sdrivers(int n);
char Sender guards(int n);

In order to be accessible from outside, the header file contains function
prototypes for drivers, start/stop drivers and guard wrappers.

78 Code and Schedule Generation Framework

C Module Body File

The following glue code elements are written to the file <module> .c in the
destination directory:

e CIncludes (emitC_Includes())

Node2/Receiver_.c

#include "tdl machine.h"
#include "tdl_async.h"
#include "Receiver .h"
#include "Sender_ .h"

The included header files are that of the TDL Runtime System (tdl machine.h
and tdl async.h), the corresponding <module> .h header just described
above, as well as the glue code header files of all imported modules.

e Ports (emitC Ports())

Node2/Receiver_.c

static tdl_int Receiver display; /* private actuator port Receiver.display */

static tdl int Receiver consume i; /* private input port Receiver.consume.i */

static tdl int Receiver consume o; /* private output port Receiver.consume.o */

static tdl_int Receiver consume o phy; /* internal value of private output port
Receiver.consume.o */

For every TDL port a C variable is defined. For output ports an additional
internal port is generated that holds the result of a task execution until the
corresponding logical ports are updated according to LET semantics.

e Drivers (emitC Drivers())

Node2/Receiver_.c
void Receiver drivers(int n) {
switch (n) {
case 0: /* terminate task Receiver.consume */
Receiver consume o = Receiver consume o phy;
break;
case 1l: /* set actuator with private actuator port Receiver.display */
Receiver setDisplay(Receiver display);

break;
case 2: /* update private actuator port Receiver.display */
Receiver display = Receiver_ consume_ O;
break;
case 3: /* prepare release of task Receiver.consume (= copy input ports) */
Receiver consume_ i = Sender_ produce o;
break;

}

A function void <module> drivers(int n) is emitted, which executes driver
number n. The number corresponds to the argument of the E-Code's call
instruction. Drivers are emitted for mode switch, task release, task
termination, actuator update, actuator setting, sensor getting and initialization
functions. There are special release, actuator and termination drivers for
asynchronous activities. In addition, both asynchronous and synchronous
terminate drivers may trigger asynchronous events by calling the TDL Runtime
System function tdl async enqueue (). Note that in contrast to the interrupt
and timer triggers, the port update trigger is therefore independent of any
specific C platform.

e Start/Stop drivers (emitC SDrivers())

Node2/Receiver_.c
void Receiver sdrivers(int n) {

Code and Schedule Generation Framework 79

switch (n) {
case 0: /* start task Receiver.consume */
Receiver consumelImpl (Receiver consume i, &Receiver consume o_phy);
break;
default:
return;
}
}

Start drivers are used to actually call the task implementation function
contained in the module functionality code. The purpose of stop drivers is to
transfer public ports via a communication network and therefore they are
empty in the non-distributed case. The function used to execute start and stop
drivers has the signature void <module> sdrivers(int n) and executes
driver n.

e Guards (emitC Guards())

Node1/Sender_.c
char Sender guards(int n) {
switch (n) {
case 0: /* guard exitMain */
return Sender exitMain(Sender switch);
}
return 0;

}

For the evaluation of guards, the function char <module> guards(int n) is
emitted to the module glue code. The guard number n corresponds to the first
argument of the if TDL Machine instruction. The function returns either 1 or 0,
depending on whether the guard evaluates to true or false.

C Main Body File

CPlatform creates a C main file named tdl main .c. This file is emitted once per
node and contains the initial starting point of the node's code, which can be a C
main () function or also some other operating system specific initialization hook.
Because the actually required content varies between different platforms and
operating systems, only basic elements are emitted by cplatform.

e Includes (emitMainC Includes())

Node1/tdl_main_.c

#include "tdl machine.h"
#include "tdl async.h"
#include "AsyncSender .h"
#include "Sender .h"

The included header files are those of the TDL Runtime System
(tdl machine.h and tdl async.h) and the glue code header files of all
modules placed on the specific node (<module> .h) as described above.

e Asynchronous Activities (emitMainC Asyncs())

Node1/tdl_main_.c

static tdl async AsyncSequence asyncs[] = {
{0, 5}, /* {pending, priority} */

}i

/* Asynchronously handle external interrupt 'INTO' */
void handleInterruptINTO (void) {
tdl async_enqueue (0);

}

80 Code and Schedule Generation Framework

static void executeAsyncSequence (int n) {
switch (n) {

case 0:
AsyncSender drivers(2);/* release async task AsyncSender.produce */
AsyncSender sdrivers(0); /* start task AsyncSender.produce */
AsyncSender drivers(0); /* terminate async task AsyncSender.produce */

AsyncSender drivers(3);/* update async act. port AsyncSender.display */
AsyncSender drivers(l); /* set actuator AsyncSender.display */
break;
}
}

CPlatform extends the class AbstractNodePlatform and thereby inherits the
functionality for preparing data structures for handling asynchronous activities.
It emits a list to the main file containing all such activities using an array of
tdl asnyc AsyncSequence sStruct elements, which contain a flag indicating
whether the sequence is currently pending and a priority for every
asynchronous sequence executed on a node. For the actual execution of
asynchronous activities, the function void executeAsyncSequence (int n) is
emitted. It executes the appropriate drivers for a given asynchronous activity
sequence n. For interrupt triggers, we emit generic interrupt handlers of type
void handleInterrupt<intName> (void), where intName is the identifier of
an interrupt as specified in a module's TDL code. The body of such a function
calls tdl async _enqueue() for all asynchronous activities triggered by
interrupt X. These functions may be used inside the interrupt service routine
(ISR) of a concrete platform. The implementation of the background thread in
whose context asynchronous activities are executed, as well as the registration
of hardware interrupts and the implementation of timer triggers, are highly
platform dependent and are therefore not done in CPlatform.

o Initializers (emitMainC Init())

Node1/tdl_main_.c
tdl async_init(asyncs, 1); /* asyncs, nofAsyncs */

A function call to tdl async init is emitted to initialize the priority queue
with the asynchronous sequences data structure.

Functionality Code Template Header File

Node1/Sender_template.h
#ifndef Sender H
#define Sender H

#include "tdl types.h"
/* Type definition */
/* Module initialization */

void Sender init (void);

/* Sensor getter function for Sender.switch */
void Sender getSwitch(tdl boolean* switch);

/* Actuator setter function for Sender.display */
void Sender setDisplay(tdl_int display);

/* Task functions */
void Sender producelImpl (tdl int* o);

/* Guard functions */
int Sender exitMain (tdl_boolean Sender_switch);

/* Initializer functions */

#endif /* #ifndef Sender H */

Code and Schedule Generation Framework 81

If the optional parameter -template is set, Ccplatform writes an additional file
named <module> template.h, which contains all elements that must be contained in
the C functionality code for a specific module. The file consists of includes, type
definitions for array and struct types, and function prototypes for the module
initialization function, actuator setters, sensor getters, task functions, guard
functions and initialization functions.

4.2.2. Embedded C Platform Plug-In

The abstract class EmbeddedCPlatform extends Cplatform and produces output for
typical embedded systems which often lack a file system and therefore require a
single, statically linked executable file that contains the complete executable code.
This means that E-Code files cannot be accessed at runtime and all relevant data
needs to be expressed as plain C code. In order to achieve this, the glue code is
extended by additional elements.

C Module Header File

The C header file created by crplatform is extended by a single line of code that
defines the module C struct (tdl machine Module) containing all information
specifying a module. It is specified as extern so that it can be accessed by the main
file and eventually by the TDL Machine.

Node1/Sender_.h
extern tdl machine Module Sender module;

C Module Body File

The content of the C body file (<module> .c) is extended by the following elements:

e E-Code (emitC ECode())

Node2/Receiver._.c
static tdl machine ECode Receiver ecodes[] = {
tdl machine CALL(1l), /* #0: call 1 -- actuator init: setDisplay(display) */
tdl machine RETURN(), /* #1: return */
tdl machine CALL(0), /* #2: call 0 -- terminate task: consume */
tdl machine NOP (1), /* #3: EOT -- end of task terminations */
tdl machine CALL(2), /* #4: call 2 -- actuator update: display := o */
tdl machine CALL(1l), /* #5: call 1 -- actuator setter: setDisplay(display) */
tdl machine NOP(2), /* #6: EOA -- end of actuator updates */
tdl machine CALL(3), /* #7: call 3 -- release task: consume */
tdl machine RELEASE (0), /* #8: release 0 -- uses: consumeImpl */
tdl machine FUTURE (11,10000), /* #9: future 11, 10000 */
tdl machine RETURN(), /* #10: return */
tdl machine JUMP(2), /* #11: jump 2 -- next cycle: main */
}i

All E-Code instructions are expressed as C code by means of an array of
structs (tdl machine ECode) that contain the E-Code opcode and parameters
as required by the C TDL Runtime System.

e Modes (emitC Modes())

Node1/Sender_.c

/* Mode freeze Dispatch Table {start driver, stop driver, time}*/

static tdl _machine DispatchEntry Sender_ dispatchtable freeze[] = {
{-1, -1, 2147483647}, /* task <sentinel> */

}i

/* Mode main Dispatch Table {start driver, stop driver, time}*/
static tdl machine DispatchEntry Sender dispatchtable main[] = {

82

Code and Schedule Generation Framework

{0, 1, 0}, /* task produce */

{0, 2, 5000}, /* task produce */

{-1, -1, 2147483647}, /* task <sentinel> */
}i

/* Modes {pcBegin, period, dispatchtable} */
static tdl machine Mode Sender modes[] = {
{4, 10000, Sender dispatchtable freeze},
{16, 10000, Sender dispatchtable main},
}i

For every mode, the instruction number where the mode begins in the E-Code,
the mode period and a mode dispatch table is emitted by using the
tdl machine Mode struct. The dispatch table contains all tasks that need to be
executed during a mode with the corresponding start and stop driver numbers
and a time instance in us. The table is obtained by calling an external
scheduler that implements the Scheduler interface. By default,
EmbeddedCPlatform uses the NonPreemptiveScheduler class which produces
a schedule suitable for operating systems that do not support task preemption.

Module (emitC Module())

Node1/Sender_.c
/* Module Runtime */
tdl machine RUNTIMEDATA (Sender runtime, 1, 1)

/* Task WCETs */
static long int Sender taskWCETs[] = {100, };

/* Module */

tdl_machine Module Sender module = {
Sender _ecodes, /* pointer to the E-Code table of the module */
28, /* number of E-codes in the E-Code table of the module */
Sender__modes, /* pointer to the modes table of the module */
2, /* number of modes in the module */
Sender init, /* function pointer to system specific initialization */
Sender guards, /* function pointer to the guards wrapper */
Sender sdrivers, /* function pointer to the start/stop drivers wrapper */
Sender drivers, /* function pointer to the drivers wrapper */
&Sender__runtime, /* pointer to module runtime data structure */
Sender taskWCETs, /* WCETs of all tasks in the module */

i

Emits a C struct (tdl machine Module) representing a complete module and
contains pointers to its E-Code, modes, functionality code init function, guards,
start/stop drivers and drivers. Furthermore it stores a runtime data structure
and the WCETs of all tasks.

C Main Body File
The following content is added to the TDL Main file:

Modules (emitMainC Modules())

Node1/tdl_main_.c

static tdl machine Module* modules[] = {
&AsyncSender module,
&Sender module,

};

A C array of module structs is defined containing all modules placed on the
node.

Code and Schedule Generation Framework 83

e TDL Machine initialization (emitMainC TDLInitCall())

Node1/tdl_main_.c
static void initTDLMachine (void) {

tdl machine init (&modules[0], 2, 5000); /* modules, nofModules, stepPeriod */
}

A function named initTDLMachine() is emitted that calls the initialization
function tdl machine init () of the TDL Machine by passing the array of
modules and the length of the step period on the node. This function is meant
to be called by platform-specific functions emitted by subclasses of
EmbeddedCPlatform.

4.2.3. Stub Module Generation

Instead of the normal glue code for a module, both cPlatform and
EmbeddedCPlatform also generate code for so-called stub modules (see 3.3). A stub
represents a module on a remote node on which it is imported by another module
but not executed locally. In this case the TDL Comm Layer is responsible for updating
the public output ports of the stub module with the corresponding port values from
the node where it is actually executed.

CPlatform and EmbeddedCPlatform use the method isStub (ModuleDecl module)
provided by the commLayer interface (see next subsection below) to decide whether
to emit the regular or the stub glue code. In the main file, stub modules are treated
in the same way as regular modules, i.e. their header files are included and they are
part of the modules struct emitted by EmbeddedCPlatform. Stub modules only
execute termination drivers and therefore all other functionality is suppressed. In the
following we list the differences when generating glue code for stub modules in
detail.

C Module Header File

e Ports (CPlatform.emitH Ports())

Node2/Sender_.h
extern tdl int Sender produce o; /* public output port Sender.produce.o */
extern tdl int Sender produce o phy; /* internal value of Sender.produce.o */

In addition to public output ports, for stub modules also the corresponding
internal task output ports are generated so that they can be updated by the
TDL Comm Layer.

C Module Body File

e Ports (CPlatform.emitC Ports())

Node2/Sender._.c
tdl int Sender produce o = 10; /* public output port Sender.produce.o */
tdl int Sender produce o phy = 10; /* internal value of Sender.produce.o */

Only public output ports and their corresponding internal ports are defined.

e Drivers (CPlatform.emitC Drivers())

Node2/Sender_.c
void Sender drivers(int n) {
switch (n) {
case 0: /* terminate task Sender.produce */
Sender_produce o = Sender_ produce_ o_phy;

84

Code and Schedule Generation Framework

break;
}

return;

}

Only task termination drivers are generated for stub modules.

E-Code (EmbeddedCPlatform.emitC ECode ())

Node2/Sender_.c

static tdl machine ECode Sender ecodes[] = {
tdl machine RETURN(), /* #0: return -- return after empty initialization */
tdl machine FUTURE(3,10000), /* #1: future 3, 10000 */
tdl machine RETURN(), /* #2: return */

tdl machine JUMP (1), /* #3: jump 1 -- next cycle: freeze */

tdl machine FUTURE(6,10000), /* #4: future 6, 10000 */

tdl machine RETURN(), /* #5: return */

tdl machine CALL(0), /* #6: call 0 -- terminate task: produce */
tdl machine FUTURE(9,5000), /* #7: future 9, 5000 */

tdl machine RETURN(), /* #8: return */

tdl machine CALL(0), /* #9: call 0 -- terminate task: produce */
tdl machine JUMP (4), /* #10: jump 4 -- next cycle: main */

}i

For stub modules a special E-Code is generated. It does not contain any new
instructions and essentially only executes termination drivers of public tasks.

Modes (EmbeddedCPlatform.emitC Modes ())

Node2/Sender_.c

static tdl machine DispatchEntry Sender dispatchtable freeze[] = {
{-1, -1, 2147483647}, /* task <sentinel> */

}i

static tdl machine DispatchEntry Sender dispatchtable main[] = {
{-1, -1, 2147483647}, /* task <sentinel> */
i

/* Modes {pcBegin, period, dispatchtable} */

static tdl machine Mode Sender modes[] = {
{1, 10000, Sender_ dispatchtable freeze},
{4, 10000, Sender_dispatchtable main},

}i

For every mode the start of the mode in the stub E-Code and the mode period
is emitted. As stub modules do not execute any functionality, only dummy
dispatch tables without any tasks are used.

Module (EmbeddedCPlatform.emitC Module ())

Node2/Sender_.c
tdl machine RUNTIMEDATA (Sender runtime, 1, 1)
static long int Sender taskWCETs[] = {100, };

tdl_machine Module Sender module = {
Sender ecodes, /* pointer to the E-Code table of the module */
28, /* number of E-codes in the E-Code table of the module */
Sender__modes, /* pointer to the modes table of the module */
2, /* number of modes in the module */
NULL, /* STUB: no initialization */
NULL, /* STUB: no guards wrapper */
NULL, /* STUB: no start/stop drivers wrapper */
Sender drivers, /* function pointer to the drivers wrapper */
&Sender runtime, /* pointer to module runtime data structure */
Sender taskWCETs, /* WCETs of all tasks in the module */

Code and Schedule Generation Framework 85

Certain elements of the module struct, such as the pointers to the module
initialization, the start/stop driver and the guard wrappers, are set to NULL as
for stub modules they are non-existent.

4.2.4. Communication Layer

The nodes of a distributed system are interconnected via some sort of
communication network, also called bus. To allow different communication protocols
to be combined with our node platforms, we introduce the notion of a communication
layer.

AbstractNode- <<interface>>
Platform CommLayer

Standalone-
<<interface>> [CCommLayer
CPlatform
CCommLayer P Standard-
CCommLayer
Standalone-
< <interf; >> 1o
Embedded- interface <] EmbeddedCCommLayer
Embedded-
CPlatform
CCommlLayer K}F----------1 Standard-
EmbeddedCCommlLayer

Figure 26. Communication layer class diagram

Figure 26 depicts a UML diagram of the platform classes described in the previous
sections along with their associated commLayer interfaces. In analogy to the platform
classes, repeated subclassing is also performed with these interfaces. Every platform
uses a class that implements a CommLayer interface which is responsible for the
generation of the code needed to interact with other nodes via a specific
communication bus. Typically, there are at least two implementations of this
interface: A trivial one for standalone nodes which are not connected to a
communication system at all and one or more that implement a concrete
communication protocol. Implementations of the CCommLayer and
EmbeddedCCommLayer interfaces handle the packing and unpacking of TDL ports
independently of the communication system actually used. Additional layers then add
communication bus specific functionality and handle code generation for specific
communication controllers used by hardware platforms. For single node systems,
both cPlatform and EmbeddedCPlatform use empty CommLayer implementations
which are named StandaloneCommLayer and StandaloneEmbeddedCCommLayer
respectively.

The hooks provided by the communication layers are called by the generic C platform
plug-ins described above and allow the corresponding CommLayer interfaces to add
specific features to the generated code.

86 Code and Schedule Generation Framework

Generic Communication Layer

The CommLayer interface provides basic functionality which is used by
AbstractNodePlatform. There are no direct implementations of this interface. It
provides the following methods:

public void | setPlatform(NodePlatform platform)

This method associates the CommLayer with a
corresponding platform plug-in object.

public boolean | isStub (ModuleDecl module)

This function signals if the specified module must be
treated as a stub module on this node. Implementing
classes determine this by querying the module to node
assignment provided in the Comm Schedule.

public void | setTiMap (Map<String, Map<String,
TaskInvocation[]>> tiMap)

Sets a map containing all task invocations of a node.
The inner map contains a String identifying the mode to
which a task invocation belongs to and the outer map
adds a String to identify the module. The task
invocations set here are intended for reuse, i.e. the
deadline field may be updated while a number of
different communication schedules are evaluated as the
deadline of a task invocation depends on the timing of
the containing frame. In the distributed case the task
invocation map is used to check the schedulability of a
node by calling NodePlatform.isSchedulable () and for
task scheduling on a node. Caching the task invocations
avoids recreating the list repeatedly and is therefore
solely a performance optimization.

public Map<String, | getTiMap ()
Map<String,

: Gets the map containing all task invocations of a node.
TaskInvocation([]>>

Table 8. Methods of interface CommLayer

C Communication Layer

The ccommLayer interface is associated to cplatform and extends the CommLayer
interface. It contains multiple hook methods so that code can be added to the include
and content sections of the module C header and body file and the C main file. The
class standardCCommLayer implements functions needed for generic distributed
platforms. It maintains a CommSchedule object which contains information on the
complete communication schedule produced by the cluster part of the code
generation framework. The following list describes its functionality:

e Include TDL Comm (emitMainC Includes())

Node1/tdl_main_.c
#include "tdl comm.h"

An include line for tdl comm.h is added to the main file tdl main .c.

Code and Schedule Generation Framework 87

Stop drivers (emitC StopSDrivers (int firstID))

Node1/Sender_.c
void Sender sdrivers(int n) {
switch (n) {
case 0: /* start task Sender.produce */
Sender producelImpl (&Sender produce o phy);

break;
case 1: { /* stop driver for task produce , mode 1, taskRelease 0 */
tdl comm Frame frame = tdl comm getFrame (1);

tdl comm putTag (frame, 1);
tdl_comm_putInt (frame, Sender_ produce_o_phy);

break; }
case 2: { /* stop driver for task produce , mode 1, taskRelease 5000 */
tdl comm Frame frame = tdl comm getFrame (2);

tdl comm putTag (frame, 2);
tdl comm putInt (frame, Sender produce o phy);
break; }
default:
return;
}
return;

}

Emits the stop drivers required in the module body file. The parameter
firstID is the first driver index number to be used for stop drivers. They
facilitate the TDL Runtime System's Comm Layer framework to transmit the
values of internal output ports via the network together with the corresponding
message tag.

TDL Comm functions (emitH Content (), emitC Content ())

TDL allows arbitrarily structured types constructed by nested arrays, structs
and primitive types. Such types are transmitted via a network by sending a
sequence of the primitive types they consist of. The code for transferring
values of structured types to and from the buffer associated with a network
frame is emitted once so that it can be reused throughout the generated code.
For every structured type a putter (put<customType>) and a getter
(get<customType>) is emitted to the module body file. Also, corresponding
prototypes are written to the module header file, as the functions might be
accessed by other modules importing the custom data structures as well. Note
that there is no example code as the producer-consumer application does not
contain any structured types.

Message decoder function (emitMainC Content ())

Node2/tdl_main_.c
static void decodeMessage (int tag, tdl comm Frame frame) {
switch (tag) {
case 1:
tdl comm getInt (frame, &Sender produce o phy);
Sender module.runtime->mode = 1;
Sender module.runtime->futureTime = 5000;
Sender module.runtime->nextPC = 6;
break;
case 2:
tdl comm getInt (frame, &Sender produce o _phy);
Sender module.runtime->mode = 1;
Sender module.runtime->futureTime = 0;
Sender module.runtime->nextPC = 9;
break;
}
}

In the main C file a function named decodeMesssage () is added. This function
has a tag number and a TDL frame as parameters. It is later called by the TDL

88

Code and Schedule Generation Framework

Comm Layer framework upon frame reception for every tag that is
encountered. The function then stores the transmitted ports in the appropriate
internal ports of the stub modules and configures the TDL Machine so that the
right termination drivers are called by setting the future time and the next
program counter (PC).

Sending asynchronous frames (emitC StartDriverAsyncSend (ModuleDecl
module, TaskDecl task))

Node1/AsyncSender_.c
void AsyncSender sdrivers(int n) {
switch (n) {
case 0: /* start task AsyncSender.produce */
AsyncSender producelmpl (&§AsyncSender produce o phy);
{
tdl comm Frame frame = tdl comm getFrame (3);
frame->position=0;
tdl comm putInt (frame, AsyncSender produce o phy);
tdl comm sendBuffer (frame->bufferIndex, frame->tdlFrameSize);
}
break;
default:
return;
}
return;

}

This hook is called during start driver generation so that an asynchronous
frame is sent after the execution of an asynchronous task if needed. The
emitted code consists of calling the TDL Comm Layer framework functions for
accessing the frame, writing the task's ports in the frame's buffer and finally
sending the buffer. The asynchronous frame assigned to a task is found by
querying the Comm Schedule which contains a list of asynchronous frames.

Receiving asynchronous frames (emitMainC Content ())

Node2/tdl_main_.c
static void receiveAsyncFrames (void) {
tdl comm Frame frame = tdl comm getFrame (3);
frame->position=0;
tdl _comm_receiveBuffer (frame->bufferIndex, frame->tdlFrameSize);
tdl comm getInt (frame, &Sender produce o phy);
AsyncSender drivers(0);

}

For the reception of asynchronous frames, a function named
receiveAsyncFrames () is emitted to the main C file. It handles to reception of
all asynchronous frames required by the stub modules assigned to a node. The
function receives all relevant frames, unpacks the TDL ports and calls the
corresponding termination drivers of the stub modules to update their ports.

Embedded C Communication Layer

The interface EmbeddedCCommLayer adds the following function to the CommLayer
class hierarchy, for which a standard implementation is provided via the class
StandardEmbeddedCCommLayer.

Stop driver number (int getStopDriverOfTaskInvocation (ModeDecl m, int
taskID, int taskDispatchTime)

Node1/Sender_.c

/* Mode main Dispatch Table {start driver, stop driver, time}*/

static tdl machine DispatchEntry Sender dispatchtable main[] = {
{0, 1, 0}, /* task produce */

Code and Schedule Generation Framework 89

{0, 2, 5000}, /* task produce */
{-1, -1, 2147483647}, /* task <sentinel> */
}i

The dispatch table created by EmbeddedCPlatform must contain the stop driver
number of a task invocation so that it can be executed. This number is
provided by StandardEmbeddedCCommLayer. Note that the stop drivers are
emitted by standardcCommLayer and therefore consequently both classes need
to use the same numbering scheme. If there is no stop driver to execute, e.g.
if the given task is non-public or there is no distribution at all, the function
returns -1. The function identifies a task invocation by its mode, its ID, and a
time instant within its logical execution.

4.3. Cluster-Level Code Generation

In the last section, we added communication capabilities to individual nodes by
assigning them a communication layer. For event-triggered communication protocols,
such as Ethernet or CAN, this can already be sufficient to enable network
communication between nodes. However, such an approach is not suitable for hard
real-time systems as for instance collisions may prevent frames from being
transmitted in a predictable way. Time-triggered communication protocols such as
TTP (Time-Triggered Protocol) or FlexRay [34] overcome this problem, but require a
global communication schedule for their operation. Usually, such a schedule is
created manually as it is difficult to automatically extract the scheduling
requirements of arbitrary systems. LET-based systems such as TDL however describe
the data flow and timing requirements of their components explicitly and
consequently it is feasible to perform fully automatic communication scheduling. This
section describes the scheduling and code generation process on the cluster-level of
our code generation framework.

As preliminaries for communication scheduling, we hold on to a number of
assumptions:

e The network infrastructure is based on broadcast semantics, i.e. a frame sent
by one node can be received at the same time by all other nodes

o Packets sent by different nodes are not combined into a single packet but are
sent as individual network frames

e Collision free access to the shared communication medium via a TDMA (Time
Division Multiple Access) approach as used by time-triggered protocols

e Adherence to the producer-consumer model, which means that the nodes that
generate information trigger the sending over the network

¢ A mechanism for distributed clock synchronization

Some of these requirements, such as the TDMA property or the clock synchronization
service, can be implemented on top of communication protocols which do not support
them natively. This can be done by generating schedules accordingly and by
extension of the platform-specific TDL Comm Layer part of the runtime system. For
example, it is possible to use a TDMA communication schedule for the event-
triggered protocol CAN and also implement a time synchronization service for it [15].

90 Code and Schedule Generation Framework

The scheduling mechanisms described below are based on previous work but have
been significantly improved and extended. The feasibility of automatic scheduling for
LET-based systems has for instance been demonstrated in [15], where the notion of
transparent distribution is proposed and a prototype implementation is presented.
However, it is tailored to a specific bus protocol, namely CAN, and is not designed in
a way so that it allows adaptations to other protocols. Also there is no clear
separation between what we call the Comm Scheduler and the Comm Scheduler
Plug-In, i.e. between platform independent scheduling tasks that need to be
performed for every LET-based system and those which are specific to concrete
network architectures. In [35] this separation is improved, but still there is no clean
interface specified such as the one we propose and which explicitly states what must

TDL Modules & platform-independent | platform-dependent

Module
Deployment
/_-

CommScheduler

CommProperties

A

A 4

CommScheduler-

3. schedule' frames .
> Plugin
FrameGenerator 9
5. frame timing
6.
A
Converter
7. 4. check
v schedulability
CommSchedule

1level
1level
1 1
1
! Generic e extends Specific :
i1 | Comm Layer Comm Layer | ,
! 1
1
! Generic Specific :
. Node Plug- L Node Plug-In [q]
' In !
1 1
1 1
L ——— -
9.

Generated

Code

Figure 27. Detailed framework collaboration diagram

Code and Schedule Generation Framework 91

be implemented to support an additional communication protocol. Apart from this
clear separation of concerns, we designed our framework so that the platform-
independent strategy by which messages are assigned to frame windows is easily
exchangeable. In previous implementations this strategy was fixed and relied on
heuristics that assigned messages with the same sender and similar release time and
deadlines to the same frame while trying to minimize the number of frames that are
generated. We improved this strategy by applying an iterative approach which varies
the parameters controlling the message-to-frame mapping. As an alternative to the
use of heuristics for this mapping, we additionally developed a scheduling strategy
which employs a genetic algorithm. A further key improvement of our scheduling
framework is the ability to check nodes for schedulability during the communication
scheduling process. This prevents that a communication schedule is produced that
eventually is not usable because of restrictions imposed by node scheduling
constraints. Apart from all these extensions, our implementation is also the first to
incorporate asynchronous communication frames.

Figure 27 depicts a more detailed overview of the code generation process already
shown in Figure 16 above, where the basic steps of the communication scheduling
process have already been described. The numbers in the figure indicate the order in
which the individual steps are performed. In comparison to the figure above, also the
internals of the Comm Scheduler are shown and the communication layer on node
level is added. Inside the CcommScheduler, a class extending the abstract class
CommProperties is used to store a list of properties of a communication platform.
The properties class is supplied by the commSchedulerpPlugin interface so that it can
be tailored to specific protocols. The interface FrameGenerator makes the strategy
which is used to map messages to frame windows exchangeable and is supplied in
the commScheduler's constructor. The CommScheduler eventually uses the Converter
class to construct the commschedule data structure.

The next subsections detail the Comm Scheduler, two strategies for creating frame
windows, and finally the Comm Scheduler Plug-in interface.

4.3.1. Comm Scheduler

The Comm Scheduler is the platform-independent part of the code generation
framework on cluster level. It coordinates the scheduling process which has TDL
modules and their mapping to a distributed platform as input. As shown in section
2.3, for every TDL task that needs to transmit a message via the network there is a
communication window for doing so inside its LET period. It is defined as the time
interval between the release and deadline of a message or a frame. The Comm
Scheduler computes all those communication windows and generates a list of
messages that need to be transferred between nodes. Those messages are then
packed into frames, whereby their concrete timing is determined by the platform-
dependent Comm Scheduler Plug-In. Finally, the Comm Scheduler produces a
CommSchedule data structure as depicted in Figure 27 as output, which contains the

CommScheduler

+ CommScheduler(strategy: FrameGenerator)

+ createCommSchedule(nodes: Node[], modules:
Modulelnstance[], plugin: CommSchedulerPlugin,
buildProgress: BuildProgress): List<Frame>

+ getNofMessages(): int
+ getAsyncFrames(): List<AsyncFrame>

Figure 28. Class CommScheduler

92 Code and Schedule Generation Framework

complete scheduling information.

As the first step in the communication scheduling process, the CommScheduler class
(see Figure 28) must be initialized. In its constructor a strategy represented by the
FrameGenerator interface and which assigns messages to frame windows must be
set:

public CommScheduler (FrameGenerator strategy)

We describe two such strategies, namely one for iterative scheduling and one that
employs a genetic algorithm, in the next two subsections.

The actual scheduling process is triggered by calling the following function of the
CommScheduler class:

public List<Frame> createCommSchedule (Node[] nodes, ModuleInstancel]
modules, CommSchedulerPlugin plugin, BuildProgress buildProgress)

It orchestrates the schedule generation and is parameterized with an array of nodes
and modules, a plug-in for the Comm Scheduler and an object implementing the
BuildProgress interface. In comparison to ModuleDecl, which is used by the
framework foundation classes, ModuleInstance represents a TDL module which is
placed on a specific node. A plug-in implementing the CommSchedulerPlugin
interface handles platform-dependent scheduling concerns. This interface most
notably contains functions to determine the communication period of the cluster and
to set concrete timings for synchronous and asynchronous frames while obeying the
constraints of a specific communication protocol. Furthermore, it provides a class
which extends the abstract commProperties class containing properties of the
communication protocol. BuildProgress is used to provide feedback during schedule
generation as this might take a considerable amount of time. Finally, the scheduling
function returns its results as a list of frames. The individual steps performed by this
core function of the Comm Scheduler are described below.

While synchronous frames are returned directly by the createCommSchedule ()
method of the Comm Scheduler, asynchronous frames are obtained by calling the
getAsyncFrames () method after the function has finished. As a next step, the results
of the scheduling process are converted to the commSchedule data structure by using
the converter class. The commSchedule contains information about nodes, frames,
messages, tasks and task ports. This data structure is important for subsequent code
generation for individual nodes. It is also written to disk as a file named
commschedule.properties. In this way, the scheduling results can be used by
external tools, for example by a network analyzer tool to decode the TDL ports
contained in the network frames. Finally, the frames and the Comm Schedule are
passed to the ClusterPlatform using the setFrames() and setCommSchedule ()
methods.

In the following, we describe the communication schedule generation process
performed by the createCommSchedule () method step-by-step.

1) Check of Communication Properties

The abstract class commProperties contains a set of properties for a communication
protocol, which are typically edited via a graphical user interface such as the
TDL:VisualDistributor. The function checkCommProperties () checks those properties
for correctness and consistency. This is done to prevent creating a schedule that
does not conform to the communication protocol's specification. Certain properties
such as the minimum and maximum communication cycle length and the minimum

Code and Schedule Generation Framework 93

and maximum size of a frame in bytes are mandatory fields already present in the
abstract class CommProperties.

2) Identification of Port Receivers

This step identifies for all output ports of all modules the nodes which receive these
ports. The number of such nodes can be from zero to all nodes in the system. The
information is stored in the module instance data structure the CommScheduler uses.
Furthermore, for every node a flag isSender is set, indicating whether a module
sends anything on the network or not. This flag can be set following two different
policies called port filters which implement the portFilter interface. While the
PublicPortFilter does not filter out any ports, the RequiredPortFilter checks
whether a port is actually received on any other node and filters out the rest. The
latter leads to a reduced number of bytes to be transferred via the communication
network.

3) Compute Communication Period

This step calculates a suitable communication period, which is the time after which
the communication schedule of the system repeats itself. The challenge is to find a
repeating pattern in the communication requirements of multiple modules with
multiple modes with different mode periods. An important constraint of LET-based
description languages such as TDL is that they restrict mode switches such that task
invocations are never interrupted by a mode switch. Thus, mode switches are said to
be harmonic, that is, a mode switch must not occur during the LET of any task
invocation of the currently active mode. Therefore, the period of a mode switch must
be a multiple of the LCM (least common multiple) of the period of tasks invoked in
this mode. Furthermore, the mode period is always a multiple of the periods of task
invocations and mode switches.

As each mode in every module may have its specific communication requirements,
an obvious candidate for the communication period is the longest time span without
a mode switch in any module. To calculate this period, we define for a given module
M the term mspGCDy as the GCD (greatest common divisor) of mode periods and
mode switch periods of all modes in M. We know that within the time span
[N*mspGCDy .. (N+1)*mspGCDy] there will not be a mode switch within module M.
In other words, we can express the mode switch instants as an integer multiple of
mspGCDy. Based on this, we calculate the bus period as the GCD of the mspGCDy, of
each module M which communicates on the bus, i.e. whose isSender flag is set.
Consequently, each mode period consists of an integer multiple of communication
periods and we introduce the term phase in order to distinguish these mutually
exclusive parts of a mode.

Note that the resulting period from the calculation just described may be unsuitable
for certain communication protocols. Therefore, the Comm Scheduler Plug-In has the
possibility to refine it by dividing it by an integer number.

4) Generate List of Messages

We generate a global list of messages representing all the information which must be
transferred via the communication network of a TDL system. We define the term
message as the collection of all values produced by a task invocation's public output
ports. Note that if a task is invoked N times per mode period, N messages are
produced. As an optimization, public output ports that are not used by any client
may be ignored according to the port filters described in step 2 above.

94 Code and Schedule Generation Framework

A message has a unique tag defining its precise origin. The tag defines the node,
module, mode, task invocation, and the phase of the mode in which the message has
been produced. The size of a message is measured in bytes as the sum of the size of
the contained values and the size of the tag.

Each message has individual timing constraints. The release constraint is the earliest
time instant when message sending can be started. The deadline constraint of the
message is the latest time instant when the message sending must be finished. A
straight-forward approach is to set the release constraint to the release time of the
task invocation that produces that message plus its worst case execution time
(WCET). Note that this is an optimistic estimate as the actual release time depends
on the task schedule used, but which is not known at this point in time in the
scheduling process. The deadline constraint results from the end of the LET of the
producer task's invocation.

During this scheduling step also the task invocation map tiMap is created. It contains
all task invocations of all modes in all modules on all nodes. It is passed on to the
Comm Scheduler Plug-In which in turn passes it on to the communication layer of
the individual nodes. The task invocation map is used for task scheduling on node-
level in the distributed case. It is a performance optimization that enables updating
the task invocation deadline field while a number of different communication
schedules are evaluated. This is necessary as this deadline depends on the timing of
the frame containing the ports of the task invocation.

5) Generation of Frame Windows out of Messages

A key problem in finding a schedule for a TDL system lies in the fact that every
module may switch its mode independently from all other modules. This leads to
different communication requirements for every combination of active modes
throughout the system. Due to the exponential number of such combinations, it is
not feasible to generate all these possible schedules and change them dynamically at
runtime. The combinatorial explosion of modes is tackled by the notion of dynamic
multiplexing as the foundation of communication schedule generation for TDL
systems [15]. This approach creates a single schedule by the length of one
communication period whose length calculation is described above. Every mode
consists of one or more consecutive communication periods, which we call the
phases of a mode. For every message in every phase, we know its release and
deadline constraint and its size. At runtime, the contents of each frame changes
dynamically depending on the currently active mode and the phase it is in. The
message tag described above identifies the contents of frames, i.e. the origin of its
messages, at runtime.

In this scheduling step, we assigh every message to a communication frame window
in accordance to the dynamic multiplexing approach just described. Frame windows
have a release time, a deadline, a size, a sender and a list of receiver nodes. We
assign multiple messages to a frame when possible. Messages must have the same
sender as the frame they are assigned to. The release constraint of a frame is the
maximum of the release constraints of the bound messages and the deadline
constraint of a frame is the minimum of the deadline constraints of the bound
messages. The schedule generator guarantees that the frame size and constraints
are sufficient for the communication requirements of all phases. Note that the
mapping of messages to frame windows is not unique, as with every message there
is a choice of whether (1) to add it to an existing frame by possibly tightening its
constraints or increasing its size or (2) to create a new frame that matches the
constraints of the message exactly.

Code and Schedule Generation Framework 95

To exemplify a possible mapping of messages to frame windows, we consider a
module with a mode of execution that has three phases, and we assume that it
produces message 1 of 4 bytes in phase 1, message 2 of 3 bytes in phase 2, and two
messages 3 and 4 of 1 byte each in phase 3. Figure 29 shows the individual
messages and the frame they are bound to throughout the whole mode period
consisting of three distinct phases, i.e. the length of the mode period equals to 3
times the communication period. The left and right bounds of the message and frame
boxes represent their release and deadline constraints. Respecting their size and
timing constraints, all messages may be bound to the same frame with size 4 bytes
in the schedule.

P mode period = 3 communication periods
phase 1 / phase 2 P phase 3 S
release deadline
! ; msg 4
msg 1 msg 2 msg 3/
frame frame frame
| | | | | | | | | | | |
T T T T T T T T T T T T r
0 ms 5 ms 10 ms 15 ms

Figure 29. Sample binding of several messages to the same frame

Although the concept of dynamic multiplexing is always the same, the actual
assignment of messages to frame windows is an optimization problem which we
factored out using the FrameGenerator interface. In comparison to previous
implementations, we had to restructure the scheduling algorithm as the generation
of the list of messages and the creation of frame windows were intertwined. In
contrast to that, we first generate a complete list of messages as described in the
last step and then use the following function to assign them to frame windows, which
is the only function in the interface:

public List<Frame> generateFrameWindows (List<Message> messages,
CommSchedulerPlugin plugin, BuildProgress buildProgress)

The function generateFrameWindows returns a list of frames on the basis of a list of
messages. Furthermore, it is supplied with a CommSchedulerPlugin which assigns
concrete timings to frames, checks whether a set of frames is schedulable at all on a
concrete communication protocol and provides a metric in the range from 0 to 1
measuring how good the scheduling solution is. An instance of the class
BuildProgress is provided to allow the frame generator strategy to output
information on its progress, which is especially useful when it can be expected that
the algorithm takes a considerable amount of time. We discuss two FrameGenerator
implementations in the subsections below.

96 Code and Schedule Generation Framework

6) Frame Scheduling

As a result of the last step, every frame is assigned a window in which it must be
scheduled. Now, the Comm Scheduler Plug-In must assign a concrete start and end
time for every frame which lies within its timing window. Note that it does make a
difference where exactly in this window a frame is scheduled. As already pointed out
above, the start of this window is only a best-case estimate and it is not guaranteed
that the whole system is schedulable if frames are actually scheduled at the
beginning of this window, as this might constrain the task scheduler too much so
that no valid task schedule can be found. Therefore we require the Comm Scheduler
Plug-In to schedule all frames as late as possible. The transmission time of a frame
depends on communication protocol specifics such as the transmission speed and
timing properties such as inter-frame gaps. The scheduler might also generate extra

communication period

frame window 1

frame window 2

}aqe window 3

NN

0 ms 1 ms 2 ms 3 ms 4 ms 5ms

Figure 30. Sample mapping of frame windows to frames

frames, for example to implement time synchronization between nodes. All these
requirements must be taken into account for calculating correct frame start and end
times. The plug-in may also merge frames when their timing requirements are
compatible and they have the same sender. Figure 30 shows a sample mapping of 3
frame windows to 3 frames aligned according to the constraints of a communication
platform.

Note that while frame scheduling by the Comm Scheduler Plug-in may already be
invoked by the frame windows strategy in the previous step, this is only optional and
the results are not stored in the frame list which the strategy returns. Therefore, the
frame scheduling step must be performed in any case after the list of frame windows
is obtained.

The Comm Scheduler Plug-In can check whether the calculated start and end times
for frames lead to a feasible schedules on node level by calling the isschedulable ()
method of the NodePlatform. This is a key feature of our framework as it takes into
account the interdependence of communication and node task schedules and thus
prevents the whole code generation process from running into a dead end by
creating a communication schedule for which not all nodes are able to come up with
an appropriate task schedule.

The following function implements communication platform-specific frame scheduling
inside the CommSchedulerPlugin interface:

public double scheduleFrameWindows (List<Frame> frameWindows)

Code and Schedule Generation Framework 97

The list of frames is updated by setting the startTime and endTime field of a Frame.
Frames may also be merged, resulting in a change in the number of frames. The
return value of type double returns a metric indicating how good a solution is on a
specific communication protocol, e.g. by reflecting the relative bandwidth usage. It is
negative when the set of frames is not schedulable at all. This might for example
occur when the bandwidth of the protocol simply is too small to accommodate all
frames that must be transferred or also when the resulting frame schedule leads to
nodes where no task schedule can be found.

After the list of frames is returned, the Comm Scheduler sorts it so that it is in
chronological order.

7) Scheduling of Asynchronous Frames

Until now, we only considered how synchronous frames are scheduled by the Comm
Scheduler. Asynchronous frames and their associated tasks are of a lower priority
and therefore are scheduled after synchronous frames by using the bandwidth which
is still available. This means that that do not participate in finding an optimal
schedule for synchronous frames. Note that there is no strict deadline for
asynchronous frames.

As a first step of the scheduling part handling asynchronous communication, all
asynchronous messages of all modules in the system are identified. As in general all
such messages are triggered at a different time at runtime, we map each of them to
an individual asynchronous frame. We assign priorities to the frames according to the
priorities assigned to the asynchronous activity producing the message. Next, the
following function of the Comm Scheduler Plug-in is called to schedule the list of
asynchronous frames, which are passed in order of descending priority:

public void scheduleAsyncFrames (List<AsyncFrame> asyncFrames,
List<Frame> frames)

The function performs the mapping of the asynchronous frames to cluster platform
specific IDs stored in the field asyncFrameID in each AsyncFrame object of the list of
asynchronous frames. Synchronous frames are passed as well, giving the plug-in the
ability to schedule asynchronous frames as synchronous ones.

4.3.2. Iterative Frame Generator

In this subsection we describe one implementation of the FrameGenerator interface,
i.e. a platform-independent strategy for the creation of frame windows out of the list
of messages exchanged between modules in a distributed TDL system. It bases on
the scheduling algorithm presented in [15] and [36], but is extended (1) by iterating
over multiple threshold values used to decide whether to create a new frame window
or to bind a message to an already existing frame and (2) by taking into account the
metric that is returned by the platform-specific Comm Scheduler Plug-in. The
iteration makes it more likely to find a schedule at all or to find a better solution in
comparison to using a fixed threshold value as in existing implementations. In the
following, we first introduce a metric that measures the compatibility of a message
with an already existing frame and then explain the algorithm which consists of an
inner loop creating a candidate set of frames and an outer loop which controls how
the set is created and evaluates it.

The frame metric consists of two parts called overlapping metric and enlargement
metric. They provide a measure for the compatibility of the timing and size
constraints between a frame and a message.

98 Code and Schedule Generation Framework

The overlapping metric measures the degree of overlapping between a message and
frame window. The window of a message or a frame is the time interval between its
release and its deadline. If we allocate the message to a frame, then the new timing
constraints for the frame will be the window of the overlapping section. Therefore,
we want a high degree of overlapping, as otherwise the timing constrains become
too restrictive and we reduce the chance to find a feasible schedule. The overlapping
and the overlapping metric as an average percentage are defined by the following
formulas. The metric yields 1 if the message and the frame window overlap
completely and 0 if there is no overlapping at all.

overlapping = Min(frame.d, msg.d) — Max(frame.r,msg.r)
overlapping N overlapping

framed — framer msg.d —msg.r
2

metri CGoverlapping =

The enlargement metric measures by how much the size of a frame needs to be
enlarged so that the message fits in. It yields 1 if the frame does not need to be
enlarged at all and a value between 0 and 1 if enlargement is necessary, where
smaller values indicate more enlargement. The following formulas are used to
calculate the enlargement metric:

enlargement = Max(0, msg.size— frame.available)

frame.size
frame.size + enlargement

metri CGenlargement =

In order to get a single metric value the overlapping metric and the enlargement
metric are combined using the following formula giving both metrics equal weights.

+ metric
2

metrlcoverlapping enlargement

metric =

This formula only applies when both metrics yield a positive value. If either metric
equals to 0 or less, then the overall metric is 0 as well.

The inner loop of the algorithm creates frame windows based on a specific given
threshold. All messages are considered one after another. At the beginning, a new
frame is created and its size, release and deadline are simply copied from the
message so that the frame window is an exact fit. For all subsequent messages, we
check for all frame windows already created how well they fit by computing the
heuristic metric described above, measuring the compatibility of a message to an
already created frame. If for the best matching frame the metric exceeds the given
threshold, the message is bound to the frame and the frame's size, release and
deadline constraints are updated accordingly. Otherwise, a new frame is created for
the message. This is repeated until all messages are bound to frame windows.
Thereby, the threshold value controls whether the algorithm produces a lot of small
(in terms of its size in bytes) frame windows or a small number of large frame
windows.

The outer loop iterates over a range of thresholds from 0.1 to 1.0 in customizable
increments. For every value the inner loop is invoked and then the Comm Scheduler
Plug-in is called to evaluate the schedule based on the returned metric of the
scheduleFrameWindows () method. The strategy eventually returns the set of frame
windows which yields the highest metric value.

Code and Schedule Generation Framework 99

4.3.3. Genetic Frame Generator

The second strategy we developed for mapping messages to frame windows
facilitates a genetic algorithm, which is commonly used to solve scheduling problems
[37]. Instead of using a heuristic metric and deciding message by message if it
should be added to one of the already existing frames, we formulate the optimization
problem so that it can be solved by running a genetic algorithm. We found that such
algorithms have already been successfully applied in the field of communication
scheduling, for example for the FlexRay protocol [38]. The approach described in
[38] allocates a set of tasks to nodes which are connected via a FlexRay bus [34] so
that various constraints concerning task deadlines and message response and
freshness times are met. Our application of the genetic algorithm differs as our task
to node mapping is supplied by the user and our all constraints are directly derived
from the LETs of the tasks. Also note that as long as those LET-imposed constraints
are met the observable behavior of the system does not depend on when exactly a
message is sent. Furthermore our approach is not restricted to a specific
communication protocol as it is located in the platform independent part of our
scheduling framework.

In general, a genetic algorithm requires two things to be defined:
e a genetic representation (DNA) of the solution domain

e a fitness function to evaluate the solution domain

In our case the solution domain are all possible message to frame assignments
where the number of messages is fixed for a given system and the number of frames
can vary from 1 up to the number of messages. Consequently, we use an array of
integer values with length equal to the number of messages as DNA encoding. We
assign each message to a frame by assigning an integer frame number to each
message, i.e. DNA[i] = j associates frame j to message i. An advantage of this
genetic representation is that every message is assigned to a frame and that the
number of frames can vary between 1 up to the total number of messages. One
major disadvantage however is that it is possible to create invalid solutions as there
are restrictions on what messages can be assigned to the same frame. In order to
improve the result when performing crossover of two DNAs, we apply a normalization
algorithm every time the DNA is changed, which is after initialization and when
applying crossover and mutation. The normalization purges unused frame numbers
and sorts frames by how many messages are assigned to it. It does so by giving the
number 0 to the frame with the most messages assigned to it and so on. Consider
the following DNA example:

555323

Our normalization step would transform this sequence to
000121.

The fitness function calculation is actually divided into two steps. As first step we
apply a fast check on a solution by checking two basic criteria every valid solution
must fulfill. Those are that a frame only is allowed to contain messages from the
same sender node and that no messages with conflicting timing requirements are
assigned to the same frame. Only when this check passes we apply our more
sophisticated and also much more expensive fitness calculation function. We decided
that a reasonable fitness function depends on what communication protocol is
actually used to take into account its specific properties. Consequently, the fitness
calculation is obtained by running the Comm Scheduler Plug-In and using the return
value of the schedule function scheduleFrameWindows () as described above. This
function also takes into account whether the assigned frame timings lead to a

100 Code and Schedule Generation Framework

feasible task schedule on all nodes involved. In both steps, negative fitness values
indicate solutions that are unschedulable.

A generic genetic algorithm works as follows:
1) Generate initial population
2) Evaluate the fitness of each individual in the population

3) Repeat until termination criteria is met:
a) Select fittest individuals to reproduce

b) Breed new generation through crossover and mutation (genetic
operations) and give birth to offspring

c) Evaluate the individual fitness of the offspring
d) Replace worst ranked part of population with offspring

In step 1 we simply use a random initialization, i.e. we assign each message a
random frame with a number from 0 to (number of messages - 1) and apply our DNA
normalization as proposed above.

The fitness evaluation in step 2 and step 3c requires that the DNA of each individual
is converted to a list of frames with messages assigned according to the DNA frame
to message mapping. Only after that conversion the fitness evaluation can be
applied.

As termination criteria in step 3 we use a fixed number of generations that can be
specified by the user. Other feasible termination criteria would be a timeout or a
termination if the mean or maximum fitness does not increase anymore during a
certain number generations.

The crossover and mutation step 3c is performed by selecting a random crossover
point and creating a new DNA by using two individuals out of the pool of fittest
individuals as selected in step 3a. This is done by copying the DNA of one individual
up to the crossover point and the DNA of the another individual from there on.
Mutation is applied during this recombination process by replacing a DNA element by
a random number between 0 and (number of messages - 1) at a certain probability.
This probability is called the mutation rate in the context of genetic algorithms. It
must be high enough to enable sufficient exploration of the solution space but must
not be too high as this would lead to too much destruction of good DNA sequences.
We found a mutation rate of about 1 percent to be a feasible compromise.

Results

We tested the proposed genetic algorithm based scheduling by generating a random
set of TDL modules which exchange data with each other and are distributed across a
set of nodes. The algorithm was able to come up with a valid solution in all cases in
which the heuristic approach found a valid schedule. With a pool of 100 individuals it
typically took only a few generations until at least one valid solution was found. After
about 50 generations, the fitness of the best individual reached the level of the
heuristic strategy. We observed that when we increased the number of messages in
the system the genetic algorithm had problems finding a solution as then the number
of generations necessary to obtain at least one valid solution increased considerably.
For an example with 50 messages it took almost 100 generations to encounter the
first valid solution. However, it is important to note that for the fitness calculation
during these 100 generations only the fast fitness check was needed, which is
significantly less expensive than the one used to evaluate valid solutions. In such

Code and Schedule Generation Framework 101

cases the number of valid solutions that pass the fast scheduling check is small
compared to the whole solution domain.

When comparing results of test cases with less than 40 messages with the results of
the old, heuristic approach, we observed that we get similar solutions after less than
100 generations using a population size of 100 individuals. We consider this as
evidence that the heuristics can indeed be replaced by the use of the proposed
genetic algorithm and we are confident that this also holds for cases with more than
40 messages with an improved DNA representation, which restricts the solution
domain so that the number of invalid solutions is minimized.

4.3.4. Comm Scheduler Plug-In

<<interface>>
CommSchedulerPlugin

getCommProperties(): CommProperties

getCommPeriod(int mspGCD): int

getTagSize(int nofMsgs, int msgID): int

newFrame(int senderNodelD): Frame
newAsyncFrame(ModuleReader.Task asyncTask): AsyncFrame
getMaxFrameSize(): int

setTiMap(Map<String, Map<String, Map<String,
TaskInvocation[]>>> tiMap)

scheduleFrameWindows(List<Frame> frameWindows): double

scheduleAsyncFrames(List<AsyncFrame> asyncFrames,
List<Frame> frames)

Figure 31. Interface CommSchedulerPlugin

This section contains the full specification of the Comm Scheduler Plug-In, i.e. of the
CommSchedulerPlugin interface as depicted in Figure 31. It lists all interface
functions even though some of them have already been discussed in detail above.
The interface is used to abstract from a concrete communication protocol. It models
aspects relevant to communication scheduling and is most notably used to provide
various protocol-specific properties and methods which assign concrete timings to
abstract synchronous and asynchronous frames. Example plug-ins implementing the
interface are presented as part of chapter 1.

public | CommProperties getCommProperties ()

Returns an object of type CommProperties appropriate
for the specific communication protocol the plug-in
implements. Basic properties such as the minimum and
maximum communication cycle length and the minimum
and maximum size of a frame in bytes are mandatory
fields already present in the abstract «class
CommProperties.

102

Code and Schedule Generation Framework

public int

getCommPeriod (int mspGCD)

This function enables plug-ins to define the
communication period so that it obeys platform-specific
restrictions. The returned communication period must be
an integer divider of mspGCD, which is the maximum
possible period calculated as the GCD of all mode periods
and mode switch periods of the sending modules of a
distributed TDL system.

public int

getTagSize (int nofMsgs, int msglID)

Returns the number of bytes required for the tag of a
message. The size is calculated based on the total
number of messages and a specific message ID. These
two parameters enable either a fixed number of tag
bytes depending on the total number of messages as
well as a variable length encoding depending on the
message ID.

public Frame

newFrame (int senderNodeID)

This is a factory method to create Frame objects used for
the list of frames in the Comm Scheduler. For this
purpose, either the default class Frame can be used or a
subclass of it that can contain communication platform
specific properties or methods.

public AsyncFrame

newAsyncFrame (ModuleReader.Task asyncTask)

This method is analogous to the newFrame () factory
method above, but for asynchronous frames and
consequently returns an AsyncFrame or a subclass of it.

public int

getMaxFrameSize ()

Returns the maximum frame payload size in bytes,
which may for example depend on the length of the
communication period or other properties and
constraints.

public void

setTiMap (Map<String, Map<String, Map<String,
TaskInvocation[]>>> tiMap)

This method passes information about task invocations
to the plug-in. They are required for a performance
optimization as their deadlines are updated according to
when the corresponding messages are scheduled during
testing various communication schedules. Typically, the
tiMap is split and passed on to the CommLayer of the
individual nodes which are responsible for task schedule
generation.

Code and Schedule Generation Framework 103

public double

scheduleFrameWindows (List<Frame> frameWindows)

This core function of the plug-in interface assigns
concrete timings to the frame windows passed by the
Comm Scheduler. It sets the start and end time of the
Frame objects and might also alter the list by merging
frames. The calculated timings reflect the requirements
of the communication protocol the plug-in represents
and for example depends on the data rate, the frame
encoding and inter-frame gaps. The return value of type
double indicates how good a solution is on a specific
communication protocol. It is negative when the set of
frames is not schedulable at all and between 0 and 1 if it
is, where a better schedule returns a higher number.

public void

scheduleAsyncFrames (List<AsyncFrame> asyncFrames,
List<Frame> frames)

Performs the mapping of the asynchronous frames to
communication protocol specific IDs which are set for
every AsyncFrame. Asynchronous frames are sorted by
descending priority of their corresponding events. The
list of already scheduled synchronous frames is also
passed to enable transferring asynchronous frames as
synchronous one by adding them to this list.

Table 9. Methods of interface CommSchedulerPlugin

5. Platform-Specific Adaptations for FlexRay

This chapter presents platform-specific implementations of plug-ins to the TDL Comm
Layer framework of the TDL Runtime System as well as to the code and schedule
generation framework. We describe the prototyping hardware and node platform
plug-ins for two networked target platforms, namely the Node Renesas provided by
DECOMSYS (now Elektrobit), and the dSPACE MicroAutoBox. Both platforms are
widely used for prototyping of embedded systems in the automotive industry. They
are connected via a FlexRay communication bus, whose global time base is used to
synchronize time-triggered TDL activities and for which we present a communication
scheduling plug-in.

By using our framework and the adaptations for the FlexRay platforms and
communication bus, we are able to automatically generate a fully functional FlexRay
system that runs arbitrary TDL components. The only requirement is that both CPU
power and network bandwidth are sufficient to execute all TDL modules - otherwise
no code is generated.

In the next two sections we introduce the FlexRay protocol and describe the
prototyping hardware. Then we detail all adaptations and plug-ins required to map
TDL modules to a distributed FlexRay system. The chapter is concluded with a case
study involving three FlexRay nodes.

5.1. The FlexRay Protocol

FlexRay [34] is a time-triggered TDMA communication protocol intended for
automotive applications. Its development started in 2000 and concluded with
specification version 3.0 in 2009. It is designed as successor to the widely used CAN
protocol and additionally for safety critical applications such as steer-by-wire
systems. FlexRay operates at a speed of 10 MBit/s and thus has a significantly higher
bandwidth than other common field bus protocols such as CAN or LIN. Furthermore,
it operates collision-free within the time-triggered part and therefore exhibits
predictable behavior and includes a distributed clock synchronization service. The
first use of FlexRay in automotive series production was in 2006 for an optional
adaptive damping system in the BMW X5. Its introduction for vehicle core functions
was in 2008 in the BMW 7 Series.

A FlexRay communication cycle as depicted in Figure 32 has a fixed length specified
at design time. The cycle constantly repeats itself and consists of a mandatory static
segment, representing the time-triggered aspect of FlexRay, and an optional
dynamic segment. Furthermore, a FlexRay cycle may contain a so-called symbol
window which is used to transmit a single symbol out of a selection of three symbols
as pre-defined by the FlexRay specification. A cycle period is concluded with a
network idle time (NIT) in which no data is transmitted. This pause is for example
required for the implementation of the distributed clock synchronization mechanism.

106 Platform-Specific Adaptations for FlexRay

Flexray cycle period

Static segment Dynamic segment Symbol window NIT
A A A A
'l TN N N\
Static slot 1 Minislot 1

Figure 32. FlexRay cycle layout

The static segment is divided into equally sized static slots which are statically
assigned to specific nodes in the cluster for sending and thus guarantees
uninterrupted transmission. The optional dynamic segment also has a static size, but
it is dynamically allocated to different nodes upon runtime. This is accomplished via a
priority mechanism using so-called minislots, which partition the dynamic part and
act as small placeholders which are enlarged at runtime when the node assigned to
them transmits data. This means that for minislots at the end of the dynamic
segment, i.e. those with the lowest priority, there might not always be enough space
for their transmission if a lot of higher priority minislots are used. The size of the
dynamic segment and the maximum data size allowed to be transferred determine
how many minislots are guaranteed to be usable for data transmission in every
cycle.

Every FlexRay cluster provides two separate communication channels which share
the same basic layout concerning the size of the static and dynamic segment.
However, individual slots can either be used simultaneously to increase fault
tolerance or independently, also by different nodes, to increase data throughput.
Furthermore, FlexRay implements a distributed clock synchronization protocol which
ensures that all nodes agree on a global cluster time. To accomplish this, all nodes in
the cluster measure the difference of their local clock to the clocks of 2 to 15
designated sync nodes. Those nodes transmit a specified sync frame on both FlexRay
channels. Out of the measured difference every node calculates offset and rate
correction values which are subsequently applied so that all clocks in the system stay
in sync.

The FlexRay protocol is typically implemented on dedicated communication
controllers which autonomously handle the transmission of data via the bus. They
are configured with a set of global cluster parameters and local node parameters
which completely specify the FlexRay network communication behavior. A FlexRay
controller handles all network tasks including startup and time synchronization and
provides message buffers as interface to the host CPU, which hold the data of
individual slots and minislots to be transmitted and received. The FlexRay
specification [39] describes the FlexRay protocol in detail, including all configuration
parameters on cluster and node level and their constraints.

For the exchange of data describing a FlexRay cluster, i.e. all cluster and node
parameters, slot assignments and signal definitions, the FIBEX data format can be
used. FIBEX is an abbreviation for Field Bus Exchange and is an XML format designed

Platform-Specific Adaptations for FlexRay 107

to describe information regarding message-oriented bus communication systems
such as CAN, LIN and FlexRay. It is commonly used in the automotive industry as it
simplifies the data exchange across tools from multiple manufacturers. The "FIBEX
Expert Group" consists of representatives of BMW, Bosch, Daimler-Chrysler,
Elektrobit, dSPACE, National Instruments and Vector Informatik, among others.

5.2. Hardware Platforms

This section presents the two FlexRay-based hardware platforms we use to
demonstrate the application of our code and schedule generation framework.

5.2.1. Node Renesas

The NODE<RENESAS> Starter Kit is a FlexRay prototyping package by DeComSys
(now Elektrobit) which we use in version R2.0.2. It contains two prototyping boards
with a Renesas M32C/85 host CPU featuring a 24 MHz clock, 2MB of RAM, and 2MB
of Flash memory, and a dedicated Bosch E-Ray FlexRay controller. Furthermore the
package consist of a USB programming interface and a software package including
the GNU C compiler, a linker and a make tool supporting the Renesas M32C CPU, a
simple operating system, and drivers for the FlexRay controller.

Figure 33 shows a typical Node Renesas hardware setup. Both nodes are connected
to the power supply at the front of the node and to the FlexRay bus via a connector
at the back panel. Analog I/O is connected via a connector at the back named "AIO".
We use analog outputs to visualize actuator output on an oscilloscope. The USB
programmer is connected to the blue socket at the front of the boards. The front
panel of the board also contains digital I/O in form of 4 LEDs and 4 buttons. Also at

Figure 33. Node Renesas hardware overview

http://www.decomsys.com/

108 Platform-Specific Adaptations for FlexRay

the front panel there is a RS232 serial port for debugging purposes.

The Node Renesas is shipped with a custom operating system called AES (Application
Execution System). It is an ANSI-C software library which enables executing
periodic, time-driven application tasks. AES is pre-runtime configurable and supports
synchronization with the FlexRay communication system. Its configuration describes
task executions by means of a dispatch table where every entry specifies a task
invocation time. Instead of the typical main () function which is normally the initial
entry point of a C program, AES uses three hooks for initialization, idling and
shutdown.

The following shows a complete sample configuration for AES which invokes the
function periodicTask() every 5ms by executing it twice within an application
period of 10ms. Note that all entities are mandatory for both single node and
distributed systems. The application cycle length skaAES ApplCyclelenUs is the
length of the dispatcher round, i.e. within this time the dispatch table is executed
exactly once. It can differ between nodes but always needs to be a 2" multiple of the
FlexRay cycle period.

static void periodicTask (void) {
[...]
}

/* This task runs when there is no running time-triggered task. */
void skAES ApplIdleTask (void) {}

/* This function is called at system start up */
void skAES ApplInitHook (void) {}

/* This function is called when the system (skAES) shuts down. */
void skAES ApplShutdownHook (skAES ErrorType skAES ErrNo) {}

/* AES dispatch table */

const skAES TaskDescriptionType skAES TaskDescription[] = {
/* Offset in us, Run only if synchronized with cluster, Task function */
{0U, SK AES FALSE, periodicTask},
{50000, SK_AES FALSE, periodicTask}

}i

/* Number of tasks in the dispatch table */
const uint8 skAES NumberOfTasks = sizeof (skAES TaskDescription) /
sizeof (skAES TaskDescription[0]);

/* Length of the application cycle */
const skAES TimeType skAES ApplCycleLenUs = 10000U;

/* FlexRay synchronization parameters */

const skAES TimeType skAES MaxDecreaseUs 500;

const skAES TimeType skAES MaxIncreaseUs 50U;

const skAES SyncModeType skAES SyncMode = SK AES SYNCMODE HARD;

In addition to the AES operating software, further libraries are provided by the Node
Renesas Starter Kit. The COMMSTACK FlexRay controller driver provides frame-based
access to FlexRay communication controllers. It requires corresponding COMMSTACK
configuration files which mainly contain FlexRay cluster and node parameters and
configuration of the FlexRay controller buffers. The OS Synchronization Handler
(OsSh) is used to synchronize the AES operating system to the time base of a
running FlexRay cluster and the Target Platform Infrastructure (skTPI) provides
access to basic hardware devices such as the front panel LEDs and buttons.

5.2.2. MicroAutoBox

The MicroAutoBox (see Figure 34) is a rapid prototyping platform by dSPACE which is
commonly used in the automotive industry. We used the model MicroAutoBox
1401/1505/1507. Its main processing unit is a Power PC 750 FX CPU running at 800

Platform-Specific Adaptations for FlexRay 109

Figure 34. dSPACE MicroAutoBox

Mhz and is equipped with 8 MB of RAM. It has a dedicated digital I/O subsystem
based on a Motorola 68336 microcontroller which is connected via a dual-port
memory with the master CPU. The MicroAutoBox has the following set of external
interfaces:

4 parallel A/D converters multiplexed to 4 channels each with 12-bit resolution
and another 16 A/D channels with 10-bit resolution

D/A conversion providing 8 D/A channels with 12-bit resolution

Bit I/O unit providing 16-bit input, 10-bit output, and 16-bit input/output with
bitwise selectable direction

Multiple PWM (pulse width modulation) inputs and outputs suitable for chassis
and engine control applications

Interrupt handling providing 4 external hardware interrupts lines

4 CAN controllers

2 LIN controllers

2 serial interfaces

FlexRay support via 2 optional IP modules, providing 2 FlexRay channels each.

We equipped our MicroAutoBox with one dSPACE DS4330 IP Module containing
a PFR4300 FlexRay communication controller

As the MicroAutoBox is designed for rapid prototyping in the automotive context, it is
typically programmed by using a MATLAB/Simulink block set called the Real-Time
Interface (RTI) and subsequent code generation. However, it can also be

110 Platform-Specific Adaptations for FlexRay

programmed directly in C by using the interface of its real-time operating system
called the dSPACE Real-Time Kernel (RTKernel). It comprises functions for task
management, task scheduling, and interrupt handling. Furthermore, there is also a
documented API for all input/output devices and the FlexRay interface.

The MicroAutoBox is shipped with a build environment consisting of a C compiler by
Microtec and a make tool. Compiled binary files are sent to the MicroAutoBox via a
proprietary programming interface connected using a PCMCIA card. For that purpose,
dSPACE provides the ControlDesk utility.

5.3. TDL Comm Layer Framework Plug-Ins

The TDL Comm Layer framework described in section 3.3 requires platform-specific
plug-ins that are specific to a communication protocol and hardware platform. The
minimum required functionality consists of platform initialization code and the
sending and receiving of TDL Comm Layer buffers. Thus, the following three
functions, whose prototypes are already present in tdl comm.h, must be
implemented in the file tdl comm <platform>.c:

void tdl comm init platform(void) ;
void tdl comm receiveBuffer (int bufferIndex, int size);
void tdl comm sendBuffer (int bufferIndex, int size);

FlexRay controllers autonomously take care of frame transmission according to the
communication schedule specified by the controller configuration. Frame sending and
receiving therefore only requires copying data between the TDL Comm Layer buffers
and the FlexRay controller, which must to happen before or after the actual
transmission of the frame respectively. Another important issue is the
synchronization with the FlexRay bus, whose implementation differs among
platforms. Prototypes of such additional platform-specific functions must be added to
the tdl comm <platform>.h header file.

FlexRay Legacy Signal Access

In addition to the get and put methods implemented in the TDL Comm Layer
framework for handling TDL data types, we also add functionality to send and receive
non-TDL or legacy signals on the FlexRay bus. As those functions should be usable
by all FlexRay platforms, we put them in a separate file tdl comm flexray.c and
corresponding header file tdl comm flexray.h. The signature of the get and put
functions are as follows:

void tdl comm get<TDLType>Signal (int bufferIndex, int bitPosition, int

size, char isBigEndian, tdl <TDLType>char* data);

void tdl comm put<TDLType>Signal (int bufferIndex, int bitPosition, int
size, char isBigEndian, tdl <TDLType>char* data);

For every TDL type, which are boolean, char, byte, short, int, long, float, and
double, there are corresponding put and get methods to access legacy signals
transmitted on the FlexRay bus. The signals are identified by buffer index, bit
position, size and endianness. Those parameters can for example be read from a
FIBEX file describing an existing FlexRay cluster.

Node Renesas

The TDL Comm Layer framework plug-in for the Node Renesas is implemented in the
files tdl comm noderenesas.c and tdl comm noderenesas.h. The platform
initialization code configures the FlexRay controller and initializes the FlexRay

Platform-Specific Adaptations for FlexRay 111

synchronization handler. The Comm Layer buffer send and receive functions are
implemented by calling the FlexRay driver functions TDDLL TxFrameByID and
TDDLL RxFrameByID respectively. The following two specific elements are added to
the tdl comm noderenesas.h header file:

void tdl comm noderenesas syncFlexRay (void) ;

The function tdl comm noderenesas syncFlexRay must be called periodically at
runtime. It synchronizes the local clock of the AES operating system to the FlexRay
bus time by using the FlexRay synchronization handler supplied by DeComSys.

extern TDDLL ConfigType* tdl comm noderenesas commstackConfig;

This variable holds the FlexRay controller configuration that must be provided for the
FlexRay driver delivered with the Node Renesas prototyping kit.

MicroAutoBox

The files tdl comm mabx.c and tdl comm mabx.h implement the TDL Comm Layer
framework plug-in for the MicroAutoBox. For the purpose of synchronization of the
TDL Runtime System to the FlexRay bus, the plug-in provides two basic functions,
which are facilitated by the synchronization mechanism implemented in the
generated glue code for the MicroAutoBox platform:

char tdl comm mabx getCommCycle (void)
ts timestamp type tdl comm mabx getTS (void)

The first function returns the number of the current FlexRay communication cycle in
the range from 0 to 63 while the second returns a timestamp indicating the
beginning of the next FlexRay cycle. Both values are obtained by using the dSPACE
FlexRay API.

5.4. TDL:VisualDistributor Interfaces

Code generation for concrete platforms requires information on the deployment of
modules to nodes as well as additional platform-specific information, such as the
worst-case execution time (WCET) of tasks and the mapping of sensors and
actuators to specific hardware devices. In the TDL tool chain this data in managed by
the TDL:VisualDistributor tool, which has a graphical user interface but may also run

£ TDL:VisualDistributor - Producer-Consumer Example
File Edit Help

DR~ 2

Syskem Sensor Mame Input Device

E';";;‘zrs switch BIT:1:2:1

= Model
{ E| = Placed Modules
_g AsyncSender

i -7 Connected Clusters
| E-ma Nodsz
-7 Madules

Placerment | WCET | Input | Qubput || Build

Figure 35. TDL:VisualDistributor property page example

112 Platform-Specific Adaptations for FlexRay

in batch mode. The tool acts as front-end to the code and schedule generation
framework and provides the Java interfaces described in this section which the node
and cluster platform plug-ins must implement so that they can access the data model
of the TDL:VisualDistributor. From this data model plug-ins can for example retrieve
the deployment of modules to nodes. Furthermore, the interfaces enable plug-ins to
provide custom, editable properties. Figure 35 depicts an example for such a custom
property page for configuring the input device of a sensor of a module placed on a
specific node.

DistributorCluster DistributorNode DistributorModule

Connection Placement

Sender

Figure 36. TDL:VisualDistributor data model classes

Figure 36 shows a UML diagram of the TDL:VisualDistributor data model which is
used to describe the topology of a TDL system. It consists of six classes which all
extend the DistributorObject <class. The <classes DistributorCluster,
DistributorNode, and DistributorModule represent a communication cluster, a
node, and a TDL module respectively. A Placement assigns a module to a node, a
Sender indicates on which cluster a placement sends and a Connection links a node
to a cluster.

The interface PropertiesProvider (see Figure 37) is implemented by node and
cluster platform classes in order to provide property pages specific to particular
distributor objects. A PropertyPage essentially is a table with two columns,
containing the name of the property on the left and the value of the property on the
right. It extends the Java Swing class AbstractTableModel which provides a table
model to a JTable. The value of the property can be represented by various Java
Swing elements, such as a text field, a drop down box or a file chooser. In order to
obtain property pages for elements of its data model, the TDL:VisualDistributor calls
the function getPropertyPages () for every DistributorObject:

public PropertyPage[] getPropertyPages (DistributorObject dob,
PropertyPage[] base)

Individual platforms then either directly return the existing propertyPage array base
if they do not add any property pages or add or modify PropertyPage objects which
are then displayed as part of the TDL:VisualDistributor's user interface associated
with the specific DistributorObject dob.

Platform-Specific Adaptations for FlexRay 113

The interface DistributorNodePlatform (see Figure 37) serves to associate a
platform plug-in to a node in the distributor model. It extends the interfaces
NodePlatform and PropertiesProvider and adds a set and get a method for a
DistributorNode object.

<<interface>> <<interface>> <<interface>>
NodePlatform PropertiesProvider ClusterPlatform
/\ /\ A\ /\

<<interface>>
CommSchedulerPlugin

<<interface>> <<interface>>
DistributorNodePlatform DistributorClusterPlatform
setDistributorNode(node: DistributorNode) setDistributorCluster(cluster: DistributorCluster)
getDistributorNode(): DistributorNode getDistributorCluster(): DistributorCluster

Figure 37. TDL:VisualDistributor interfaces

In a similar way, the interface DistributorClusterPlatform (see Figure 37) links a
cluster platform and Comm Scheduler Plug-in to a cluster in the distributor data
model. For that purpose, it extends the interfaces ClusterPlatform,
CommSchedulerPlugin and PropertiesProvider. Furthermore, it provides set and
get methods for a DistributorCluster object.

Embedded- <<interface>>
CPlatform DistributorNodePlatform
/\

B

NodeRenesas- MicroAutoBox-
Platform Platform

Figure 38. Prototyping hardware node platforms

114 Platform-Specific Adaptations for FlexRay

5.5. Node Platform Plug-Ins

This section details the platform-specific code generation for the Node Renesas and
the MicroAutoBox. It focuses on standalone or single node systems, i.e. on how TDL
modules are executed on these platforms without taking distribution into account.
Support for distribution is added using communication layer implementations for
FlexRay, which we describe in the next section.

Figure 38 shows a UML class diagram depicting the NodeRenesasPlatform and
MicroAutoBoxPlatform plug-ins we developed for our prototyping hardware
platforms. As both platforms are programmed in C, the plug-ins are based on the
class EmbeddedCPlatform which we introduced in chapter 1. The interface
DistributorNodePlatform links the plug-ins to the TDL:VisualDistributor so that
they can query its data model and provide user-editable properties.

The plug-ins are tailored to the concrete hardware platforms including their operating
systems, compilation environments and input/output device drivers. The generated
code must guarantee that synchronous activities are carried out as specified by TDL
modules. Concerning asynchronous activities, it depends on the platform and
especially on its operating system how and to what extent asynchronous activities
can be implemented. For example, not every platform supports hardware interrupts.

In this chapter we again use the producer-consumer example with synchronous and
asynchronous producer and consumer modules as introduced in 4.2. For Nodel we
generate code using the MicroAutoBox plug-in and for Node2 using the Node Renesas

plug-in.

5.5.1. Node Renesas Platform

The class NodeRenesasPlatform extends EmbeddedCPlatform and adds all elements
required to run TDL applications on the Node Renesas prototyping platform. It
generates only code which is independent of the concrete CommLayer associated with
it. NodeRenesasPlatform implements the DistributorNodePlatform interface that
enables it to provide user editable properties to the TDL:VisualDistributor and to
access its data model. For that purpose, it provides three property pages via the
getPropertyPages () function of PropertiesProvider which are linked to a
Placement. These are NodeRenesasInputPropertyPage for the assignment of input
devices to TDL module sensors, NodeRenesasOutputPropertyPage for the
assignment of output devices to TDL actuators and NodeRenesasBuildPropertyPage
for build options as the location of the functionality code source directory.
Furthermore, NodeRenesasNodePropertyPage (see Figure 39) is linked to a
DistributorNode and provides properties such the install location of the Node
Renesas Starter Kit.

In order to meet constraints concerning the application cycle length of the AES
operating system, the method getsStepPeriod(), introduced in EmbeddedCPlatform,
is overridden. The function is used as input for the task scheduler and calculates the
step period of the TDL Machine, i.e. the period in which it must be invoked so that it
can fulfill the timing requirements of the modules mapped to a node. For distributed
systems involving a Node Renesas, the AES application cycle length must be a 2"
multiple of the FlexRay cycle period of the system. Furthermore, the application
period must be an integer multiple of the step period so that the TDL Machine can be
invoked using one or multiple entries in the AES dispatch table, which specifies all
task invocations within one application cycle.

Platform-Specific Adaptations for FlexRay 115

£ TDL:VisualDistributor - Producer-Consumer Example
File Edit Help

D@~ 27

~ System Property Yalue
[Clusters

Modes
- Model

Starter Kit Directory Ci\ModeRenesasstarterkit

Include Directories

Source Directories CiProducerConsumerExample

EI Placed Modules

_QE' Receiver
B AsynicReceiver
[Connected Clusters
[+ Modules

Mode | mode Renesas |

Figure 39. Node Renesas node property page

Unfortunately, there is no documented interface in the Node Renesas' AES operating
system to access the CPU's interrupt lines. As a result, this trigger mechanism for
asynchronous activities is not available. The plug-in checks this limitation and yields
an error message when a TDL module contains an interrupt trigger and is deployed
on a Node Renesas platform.

C Module Body File

e Includes (emitC Includes())

Node2/Receiver_.c
#include <AnalogIO.h>
#include <skTPI.h>

Includes for skTPI.h and AnalogIO.h are added if they are required by the
emitted hardware drivers.

QOutput Device Mapping: display

() Frant Panel LED

Analog Ij0

i Pin

(") Debug Pin
(") FIBEX: FlexRay
() Manual

Figure 40. Node Renesas platform output device mapping dialog

e Hardware drivers (emitC DeviceDrivers())

Node2/Receiver _.c

static void Receiver setDisplay(tdl int Receiver display) {
AnalogIO set (0, Receiver display);

}

Via the TDL:VisualDistributor the NodeRenesasPlatform provides the ability to
assign sensors and actuators to concrete hardware components and I/O pins.
Figure 40 shows the dialog used to map a TDL actuator to an output device.
The available hardware consists of the 4 LEDs and 4 buttons on the front panel

116

Platform-Specific Adaptations for FlexRay

of the Node Renesas and back panel pins for 8-bit analog in- and output.
Depending on the selected mapping the appropriate code is generated in the C
module body file from which the emitted functions are also called by the driver
code emitted by cprlatform.

C Main Body File

Includes (emitMainC Includes())

Node2/tdl_main_.c
#include <AnalogIO.h>
#include <skTPI.h>

The added includes consist of an AES header file (skAES.h) and headers
required for one-time initializations of hardware drivers (AnalogIO.h).

Timer trigger for asynchronous activities
(emitMainC AsyncTimerFunctions())

Unfortunately, AES provides no access to the CPU timer. As an approximation,
we implemented the timer trigger so that it is activated after a certain number
of TDL Machine invocations. This corresponds to the semantic of the timer
trigger to be activated after at least the specified time. We emit a function
handleAsyncTimers (void) which is called every step period and maintains an
individual counter for each timer period. When a timer expires, it is reset and
the corresponding tdl async_enqueue () function is called.

Periodic task (emitMainC PeriodicTask())

The periodic task (static void periodicTask()) is the function that is called
periodically once per step period, i.e. the GCD of all periodic actions the TDL
Machine needs to perform. The body of the periodic task function is emitted by
@ NodeRenesasCommLayer hook as it depends on whether distribution is
required or not. In the single node case, the periodic task consists of calling
the TDL Machine step function and of the handleAsyncTimers () function just
described above.

AES operating system hook functions (emitMainC AESFunctions())

Node2/tdl_main_.c
void skAES ApplIdleTask (void) {
for (;;) |
int index = tdl_async_dequeue();
if (index >= 0) {
executeAsyncSequence (index) ;
}
}
}

void skAES ApplInitHook (void) {

AnalogIO_init(); /* Initializes sensor/actuator io. */

tdl _comm noderenesas_commstackConfig = &TDDLL Config Node2 MCU;

tdl comm init (&commConfig);

tdl async_init(asyncs, 1); /* asyncs, nofAsyncs */

tdl machine init (&modules[0], 4, 5000); //modules, nofModules, partitionPeriod
}

void skAES ApplShutdownHook (skAES ErrorType skAES ErrNo) {
}

The AES operating system provides no support for task preemptions or task
priorities. However, it does have a so-called idle task which is specified by

Platform-Specific Adaptations for FlexRay 117

implementing the hook function skAES ApplIdleTask. The idle task runs when
no time-triggered task is running. It is therefore suitable to execute
asynchronous TDL activity sequences as its priority is lower than that of the
TDL Machine, which is implemented as a time-triggered task inside the
dispatch table. The idle task simply has to poll the priority queue in an endless
loop and execute the corresponding activity when it is set active in the queue.

The initialization of the TDL Runtime System and optional hardware drivers is
ensured by using the AES initialization hook skAES ApplInitHook.

e AES operating system configuration constants (emitMainC AESConstants())

Node2/tdl_main_.c

const skAES TaskDescriptionType skAES TaskDescription[] = {
/* Offset in us, Requires synchronous CS, Task function */
{0U, SK AES FALSE, periodicTask},
{50000, SK AES FALSE, periodicTask},

}i

const uint8 skAES NumberOfTasks =
sizeof (skAES TaskDescription) / sizeof (skAES TaskDescription[0]);
const skAES TimeType skAES ApplCycleLenUs = 10000U;
const skAES TimeType skAES MaxDecreaseUs = 50U;
const skAES TimeType skAES MaxIncreaseUs = 50U;
const skAES SyncModeType skAES SyncMode = SK AES SYNCMODE HARD;

The AES operating system runs periodic tasks by use of a sequential dispatch
table. The plug-in emits a dispatch table that invokes the periodicTask and
therefore the TDL Machine exactly every step period.

Make File

For every node a make file is emitted via the method emitMake Content (). It uses
generic make files provided by DeComSys for the Node Renesas and its AES
operating system. The make file ensures that the whole collection of C code, which
includes the module functionality code, module and stub module glue code, and the

TDL Runtime System code, is compiled and linked correctly.

Node2/Makefile
ROOT ?= C:\RenesasStarterKit\ESW
DESTDIR = C:\Example

TARGET_APP += \
Node2 \

CUSTOM CFLAGS = -DPLATFORM RENESAS -DTDL_ DISPATCHED
CUSTOM_CFLAGS += -DTDL DISTRIBUTED

REQUIRED COMPONENTS += \
$ (ROOT) /SWP/Types \
S (ROOT) /SWP/dcsCstFr \
S (ROOT) /SWP/skTPI \
$ (ROOT) /SWP/skAES \
$ (ROOT) /SWP/0OsSh \
$ (ROOT) /SWP/FrSh \
INCLUDE DIRS += \

SOURCE_DIRS += \
$ (DESTDIR) /Nodes/Node2 \

include $(ROOT)/BuildFiles/arch common/Makefile base.mak

5.5.2. MicroAutoBox Platform

118 Platform-Specific Adaptations for FlexRay

£ TDL:VisualDistributor - Producer-Consumer Example
File Edit Help

OB E -~ 2

System Interrupt Mame Interrupt Line

#-[7 Clust
£ st MTO D51401_IR4
=[5 Mode

- Placed Modules

-7 Connected Clusters
C - NodeZ

- Modules

Mode | Interrupts | MicrodutoBox

Figure 41. TDL:VisualDistributor interrupt assignment

The class MicroAutoBoxPlatform implements single-node code generation for the
MicroAutoBox 1401/1505/1507 hardware. Through the DistributorNodePlatform
interface it provides three property pages which are linked to a Placement, i.e. a
module assigned to a node. These are MABXInputPropertyPage for the assignment
of input devices to TDL sensors, MABXOutputPropertyPage for the assignment of
output devices to TDL actuators and MABxXBuildPropertyPage for build options such
as the location of the module's functionality code. Furthermore, two property pages
are linked to a pistributorNode: MABXNodePropertyPage provides options such as
include and source directories and MABXInterruptsPropertyPage enables the user to
assign the logical interrupt names in TDL modules to the hardware interrupt lines of
the MicroAutoBox. See Figure 41 for a TDL:VisualDistributor screenshot depicting
how to assign an interrupt line to the INTO interrupt used in the AsyncSender module
of the producer-consumer example.

The features of the MicroAutoBox operating system are sufficient to implement
asynchronous activities and all corresponding trigger types in a straightforward way.
The execution of asynchronous activities is performed by a low priority task. The
MicroAutoBox has a number of hardware interrupt lines which can be configured to
be used as interrupt triggers for asynchronous activities. For timer triggers,
individual tasks are scheduled with the corresponding timer period which call the
enqueue function.

Unfortunately, the Microtec C compiler does not support the TDL type 1ong. To check
if @ TDL module uses this type, we override a method of cplatform which returns
the C identifier of a TDL type. Before the overridden method returns the identifier via
a super call, it aborts the whole code generation process by throwing an exception
when it encounters the TDL type long. This example illustrates how the repeated
subclassing approach employed by the code generation framework enables
subclasses to influence the process according to specific requirements.

C Body File

e Includes (emitC Includes())

Node1/Sender._.c
finclude <Brtenv.h>

Includes are added that are required for the hardware drivers (see below). The
header file Brtenv.h, which stands for Base Real Time Environment, includes
all further include files related to the MicroAutoBox platform.

Platform-Specific Adaptations for FlexRay 119

Input Device Mapping: switch

Bit L Unit
Bit Ij Unik
(&) Bit 1 Module |1 %
() FIBE¥: FlexRay Group |2 %
) Manual

Chanmel |1

Figure 42. MicroAutoBox platform input device mapping dialog

e Hardware drivers (emitC DeviceDrivers())

Node1/Sender._.c

/* Device variables */

extern Int32 cTableIdx 1 2 get;
static UInt8 dioValue 1 2;

static unsigned long dioStep 1 2;

/* Getter and setter functions */

static void Sender setDisplay(tdl int Sender display) {
dac_tpl write(DAC TPl 1 MODULE ADDR, 1, Sender display);

}

static void Sender getSwitch(tdl boolean* Sender switch) {
if (dioStep 1 2 != tdl machine stepCounter) ({
dioStep 1 2 = tdl machine stepCounter;
dio tpl bit io get request(DIO TPl 1 MODULE ADDR, 0, cTablelIdx 1 2 get);
dio_tpl bit io get(DIO_TP1 1 MODULE ADDR, 0, cTablelIdx 1 2 get,
&diovalue 1 2);
}
*Sender switch = 1-((diovValue 1 2 >> 0) & 1);
}

MicroAutoBoxPlatform provides property pages to the TDL:VisualDistributor
to configure the mapping of sensors and actuators of TDL module to actual
hardware devices. Figure 42 depicts the dialog for input device mapping. The
specified settings result in the generated code above for Sender getSwitch ()
in the module glue code file.

Main file

e Includes (emitMainC Includes())

Node1/tdl_main_.c
finclude <Brtenv.h>
#include <rtkernel.h>

The included headers consist of the base include file of the MicroAutoBox
libraries, Brtenv.h, and the header file of the RTKernel, rtkernel.h, which

contains operating system functions for task scheduling and interrupt
configuration.

e Timer trigger for asynchronous activities
(emitMainC AsyncTimerFunctions())

For every distinct period of timer triggers for asynchronous activities, a static
function timer<period>() is emitted. In the main function every such function
is then scheduled separately using the required period.

120

Platform-Specific Adaptations for FlexRay

Periodic task (emitMainC PeriodicTask())

The periodic task (static void periodicTask(rtk p task control block
pTCB)) is the function that is called periodically every step period. The step
period equals to the GCD of all periodic actions the TDL Machine must perform.
In order to match the signature required for task functions by the RTKernel,
the periodic task has a task control block as argument. The body of the
periodic task function is emitted by a MicroAutoBoxCommLayer hook, as it
depends on whether distribution is required or not. In the single node case, it
only consists of calling the TDL Machine step function.

Main function (emitMainC Main())

Node1/tdl_main_.c
void main (void) {
init () ;
dac_tpl init (DAC_TP1 1 MODULE_ ADDR) ;
dio tpl com init (DIO_TP1 1 MODULE ADDR, DIO TPl EC STD MODE);
dio tpl bit io init(DIO_TP1 1 MODULE ADDR, 0, 2, DIRMASK 1 2, 0);
dio tpl bit io get register (DIO TP1 1 MODULE ADDR, 0, &cTableldx 1 2 get, 2);
tdl comm init (&commConfig) ;
tdl async_init(asyncs, 1); /* asyncs, nofAsyncs */
tdl machine init (&modules[0], 2, 5000); //modules, nofModules, partitionPeriod
rtk initialize();

{
rtk p task control block periodicTaskTCB;
rtk p task control block syncTaskTCB;
lastTSmit = -100;

periodicTaskTCB = rtk create task(periodicTaskWrapper, 2, ovc_count,
NULL, INT MAX, O0);
rtk bind interrupt (S_INTERVAL A, 0, periodicTaskTCB, 0.0f, C LOCAL,0, NULL);
rtk set task type(S INTERVAL A, 0,RTK NO SINT,rtk tt periodic,NULL,0.0f, 1);
syncTaskTCB = rtk create task(syncTask, 50, ovc_count, NULL, INT MAX, 0);
rtk bind interrupt(S_INTERVAL A, 1, syncTaskTCB, 0.0f, C LOCAL, 0, NULL);
rtk set task type (S INTERVAL A, 1,RTK NO SINT,rtk tt periodic,NULL,0.0f, 1);
rtk it task register rel(S_INTERVAL A, 1, RTK NO_SINT,0.0f,0,0.0050f, NULL);
}

ds1401 set interrupt vector (DS1401 IR4, handlelInterruptINTO, SAVE REGS ON) ;
ds1401 enable hardware_ int (DS1401 IR4);
DS1401 GLOBAL INTERRUPT_ ENABLE () ;

rtk _enable services();

while (1) {
int index = tdl async_dequeue();
RTLIBiBACKGROUNDisERVICE();
if (index >= 0) {

executeAsyncSequence (index) ;

}

}

}

The MicroAutoBox operating system requires a function void main (void),
which is executed upon startup. It consists of various initialization calls and
concludes with an endless loop handling the execution of asynchronous
activities.

The first block of code initializes the RTKernel (init() and
rtk initialize()), the input/output devices required by the modules of a
node and the different parts of the TDL Runtime System.

The next block defines and schedules numerous periodic tasks. To invoke the
TDL Runtime System periodically, the periodicTask is scheduled every step
period. For distributed FlexRay systems, the communication layer (see below)

Platform-Specific Adaptations for FlexRay 121

adds a periodic syncTask which handles the synchronization of the local clock
to the FlexRay bus clock. Furthermore, every generated asynchronous timer
trigger task (timer<period>()) is scheduled according to its trigger period.

The block that follows assigns logical TDL interrupts to hardware interrupt lines
of the MicroAutoBox according to the corresponding setting in the
TDL:VisualDistributor. In the code example above, the logical interrupt INTO,
for which the cplatform class already created a handleInterruptINTO ()
function, is mapped to the hardware interrupt line DS1401_1R4.

As the main function runs at the lowest priority and is preempted by all other
tasks, it is a natural choice for executing asynchronous activities. Therefore an
endless loop is emitted at the bottom of the main function which constantly
polls for pending asynchronous activities and executes them when necessary.

Make File

Node1/Node1.mk
APPL = Nodel

DESTDIR = C:\Example

SRC_FILES = tdl machine.
tdl async.c
tdl main .c
AsyncSender.
AsyncSender .c \
Sender.c \
Sender .c \

Q -~ --Q

CC_FLAGS = -DPLATFORM MABX -DTDL_DISPATCHED
SRC_FILES += tdl comm.c tdl comm flexray.c tdl_ comm mabx.c

CC_FLAGS += -DTDL DISTRIBUTED
.PATH.c = .; \
LIB FILES = $(DSPACE7ROOT)\dSl4Ol\RTKernel\Rtkl4Ol.lib

C_INC_PATH = -J$ (DSPACE_ROOT) \ds1401\RTKernel \
-J$ (DSPACE_ROOT) \MATLAB\RTIFLEXRAYCONFIG\FlexRayAL \

BOARD TYPE = DS1401

BOARD DIR = dsl1401\RTLib

OBJ EXT C = 003

LIB FILES := $(LIB7FILES) $(DSPACE7ROOT)\$(BOARDiDIR)\$(BOARD7TYPE).lib

$ (PPC_ROOT) \1lib\mppcb.lib

C INC PATH := -J. -J$(DSPACE ROOT)\$ (BOARD DIR) -J$(PPC ROOT)\include $(C_INC PATH)
CC_FLAGS := $(CC_FLAGS) -c -p603e -zc -KE $(C_INC_PATH) -D_$(BOARD TYPE,UC) -QmwC0223

-QmiC0001 -D_INLINE -05
LD FLAGS = -Q i -m>$(APPL) .map -o$ (APPL) .ppcC
LK _FILE = $(DSPACE_ROOT)\$ (BOARD DIR)\$ (BOARD TYPE).lk

OBJ FILES = $(SRC_FILES,S'\.c$$'.$(OBJ_EXT C) ')
build : startup $(APPL) .ppc cleanup
startup :

echo building application "$ (APPL)"
echo using local makefile "$ (INPUTFILE)"
$if "$(prg dir)" != ""
%chdir $(PRG_DIR)
Sendif
$foreach x in $(OBJ FILES)
if exist $(x,R).$(0OBJ EXT C) del $(x,R).$(OBJ _EXT C)
%endfor

cleanup :
$foreach x in $(OBJ FILES)

122 Platform-Specific Adaptations for FlexRay

if exist $(x,R).$(0OBJ EXT C) del $(x,R).$(OBJ EXT C)
%endfor
echo application successfully built

$ (APPL) .ppc: $(OBJ_FILES)
echo linking object modules
*1nkppc -c¢ $ (LK FILE) $(LD FLAGS) $(OBJ FILES) $(LIB FILES)

$.$(0OBJ_EXT C) : %.c
echo compiling $<
echo *mccppc $(CC_FLAGS) -o $@ $<
*mccppe $(CC_FLAGS) -o $@ $<

The function emitMake Content () emits a make file which is compatible to the make
tool shipped with the MicroAutoBox. It ensures that all source code files are compiled
and linked correctly.

5.6. FlexRay Implementation

This section describes the Node Renesas and MicroAutoBox communication layers
and the Comm Scheduler Plug-In for FlexRay. Before going into detail in the
subsequent subsections, we introduce a number of base classes (see Figure 43)
which are used by all FlexRay-related classes.

The class FlexrayProperties extends the abstract class CommProperties and is
provided by the Comm Scheduler Plug-In for FlexRay (FlexrayPlatform) to the
Comm Scheduler for cluster scheduling (see 4.3). In addition to the functionality
required for scheduling purposes by the Comm Scheduler, it implements all FlexRay
constraints according by the FlexRay specification [39]. Furthermore, it is able to
calculate all cluster and node properties of a system out of a small set of base
properties, which are the cycle length, the static slot size and the size of the dynamic
segment. This functionality is intended for rapid prototyping for which it is desirable
to quickly produce a working FlexRay system. It is also possible to set all parameters
manually. In this case, the FlexrayProperties class checks whether all protocol
constraints are fulfilled.

Closely related to the FlexrayProperties class is the FlexrayNodeProperties
class, which stores all node-level FlexRay parameters. For each FlexRay node in the
system one instance of this class exists. A reference to each of them is stored in a
field of FlexrayProperties.

The abstract class FlexrayCC represents a generic FlexRay communication controller.
Concrete controllers differ in regard of the encoding of FlexRay cluster and node
properties and in the handling of communication buffers. However, they also share
common features implemented in FlexraycC such as the calculation of the CRC
(cyclic redundancy check) for frame headers and generic buffer management
functions. FlexrayCC obtains the FlexRay configuration parameters from the
FlexrayProperties and FlexrayNodeProperties class instances

For the two different FlexRay prototyping platforms we provide two FlexrayCC
implementations, namely BoschERay for the Node Renesas and MFR4300 for the
MicroAutoBox. The node platform plug-ins facilitate these classes via their
communication layers NodeRenesasFlexrayCommLayer and MicroAutoBoxFlexray-
CommLayer respectively.

Platform-Specific Adaptations for FlexRay 123

CommProperties
FlexrayNodeProperties |« FlexrayProperties
FlexrayCC FlexrayPlatform
BoschERay MFR4300
/
FlexrayNodeRenesas- FlexrayMicroAutoBox-
CommlLayer CommLayer
q
NodeRenesas- MicroAutoBox-
Platform Platform

Figure 43. FlexRay-related classes

5.6.1. FlexRay Communication Layer

StandardEmbeddedCCommLayer (see 4.2.4) implements basic communication
functionality regarding the transportation of TDL port values across the network and
is independent of concrete communication platforms. A class implementing
FlexrayCommLayer then adds code which is specific to the FlexRay communication
protocol but still independent of the concrete FlexRay controller used. The interface
has two implementations in analogy to other commLayer implementations:
StandaloneFlexrayCommLayer and StandardFlexrayCommLayer. It has no
associated node platform plug-in and only comprises common features needed by all
FlexRay-based commLayers

Closely related to FlexrayCommLayer is the class FlexraycCcC, which implements the
basic functionality of a FlexRay communication controller. It uses a data structure
called ccBuffer representing a single FlexRay controller buffer. Such buffers are

124 Platform-Specific Adaptations for FlexRay

used to store the contents of static and dynamic slots before sending and after
reception. FlexRay parameters on cluster and node level are accessed by using the
FlexrayProperties and FlexrayNodeProperties class respectively. Both property
class instances as well as a list of buffers are passed to FlexraycCc in its constructor:

public FlexrayCC (FlexrayProperties flexProps,
FlexrayNodeProperties flexNodeProps,
List<CCBuffer> buffers)

While buffers for synchronous and asynchronous frames required by a TDL system
are already passed with this constructor, additional buffers may be required to
exchange data with legacy components connected to the same FlexRay bus. For that
purpose, FlexrayCC provides the following function to allocate additional
communication controller buffers:

int requestBuffer (boolean isSendBuffer, int channel, int slot, int
cycleRepetition, int baseCycle, int size);

This method is used to request a communication controller buffer with the specified
type, FlexRay channel, slot, cycle repetition, base cycle and size parameters. The
number of the buffer is returned, which might be a newly allocated buffer or an
already allocated one that can be reused in case all its parameters match.

The class standardFlexrayCommLayer implements FlexrayCommLayer but is still an
abstract class. The following three functions depend on the concrete FlexRay
communication controller used and therefore must be implemented by its subclasses:

FlexrayCC getFlexrayCC()
String getBufferNumber (CommSchedule.CommFrame frame)
String getAsyncBufferNumber (CommSchedule.CommAsyncFrame asyncFrame)

The first method returns a concrete implementation of a FlexRay communication
controller. The next two methods return the FlexRay communication controller buffer
identifier according to the specified synchronous or asynchronous frame.

StandardFlexrayCommLayer implements the following functionality common to all
platforms connected to a FlexRay network:

¢ FlexRay signal call (flexrayCall())

Generates a function call that sends or receives a FlexRay signal using the
tdl comm set<TDLType>Signal () or tdl comm get<TDLType>Signal ()
functions in tdl comm flexray.h, which is the FlexRay-specific part of the TDL
Comm Layer framework (see 5.3). The function is used to generate
functionality code for TDL sensors and actuators in the module glue code file
which accesses legacy FlexRay signals. For that purpose, a buffer in the
FlexRay communication controller is configured using the requestCCBuffer ()
function of FlexraycCcC so that the a specific signal can be sent or received.

e FlexRay communication controller buffer allocation (getBuffers())

This function allocates FlexRay controller buffers for all synchronous and
asynchronous TDL frames based on the Comm Schedule data structure. It
returns a list of buffers of type FlexrayCC.CCBuffer and is used to instantiate
a concrete FlexrayCC instance.

e Synchronized TDL startup (emitMainC syncTDL())

Node1/tdl_main_.c (Node1 is startup master)
static char sendInitValues (char readyToGo) {
if (readyToGo) {

Platform-Specific Adaptations for FlexRay

125

buffers[2][0] = OxEE;
} else {
buffers([2][0]
}
tdl comm_ sendBuffer (2, 1);
return 1;

0x00;

}

static char receiveInitValues (void) {
return 1;

}

static char receiveReadyToGos (void) {
tdl comm receiveBuffer (0, 1);
return 1 && (buffers[0][0] == OxEE);
}

static char syncTDL = 0; // true if all TDL machines are in sync
static char readyToGo = 0;
static char isSyncTDL(void) {
if (syncTDL==0) {
if (!readyToGo) {
readyToGo = receivelnitValues();
return 0;
}
if (readyToGo) {
syncTDL=receiveReadyToGos () ;
sendInitValues (syncTDL) ;
return 0;
}
}

return syncTDL;

Node2/tdl_main_.c (Node2 is startup slave)
static char sendInitValues (char readyToGo) {
if (readyToGo) {
buffers[TDDLL LookupTxFrame (0, 3, TDDLL CHA, 1, 0)][0] = OxEE;
} else {
buffers [TDDLL_ LookupTxFrame (0, 3, TDDLL_CHA, 1, 0)][0]

0x00;

}

tdl comm sendBuffer (TDDLL LookupTxFrame (0, 3, TDDLL CHA, 1, 0), 1);
return 1;

}

static char receiveInitValues (void) {
return 1;

}

static char receiveStartNow (void) {
char startNow;

’
startNow = buffers[TDDLL LookupRxFrame (0, 194, TDDLL CHA, 1, 0)][0] ==
return startNow;

}

static char syncTDL = 0; // true if all TDL machines are in sync
static char readyToGo = 0
static char isSyncTDL (voi
if (syncTDL==0) {
if (!readyToGo) {
readyToGo = receiveInitValues();
sendInitValues (readyToGo) ;
return 0;
}
if (readyToGo) {
syncTDL=receiveStartNow () ;
}
if (!syncTDL) {
sendInitValues (1) ;

d) |

tdl_comm receiveBuffer (TDDLL LookupRxFrame (0, 194, TDDLL CHA, 1, 0), 1);

OxXEE;

126

Platform-Specific Adaptations for FlexRay

return syncTDL;
}

StandardFlexrayCommLayer implements a simple startup protocol which is
emitted to the main file and guarantees that all nodes of a TDL system start
executing modules at the same time instant. This is necessary as it is possible
that not all nodes are powered up at the same time or that they have different
boot times. When generating code, an arbitrarily selected node is chosen to be
the master of the synchronization algorithm. All other nodes become slaves
and send a signal to the master when they are ready to start executing the
first TDL Machine step. If a node uses custom functions to initialize TDL ports,
these initialization values must be transferred before startup and only after
that the node can signal that it is ready to start. The master waits until it
receives ready signals from all nodes and then sends a signal to all of them
indicating to start module execution in the next FlexRay cycle.

TDL Comm Layer framework buffers (emitMainC FlexrayBuffers())

Node1/tdl_main_.c

tdl char buffer0[
tdl char bufferl]
tdl char buffer2|
tdl char buffer3|

{0}
{0}
{0}

1
5
5
4 {0}

]
]
]
]

tdl char* buffers[] = {
(tdl char*) s&buffer0,
(tdl char*) s&bufferl,
(tdl_char*) s&buffer2,
(tdl_char*) s&buffer3s,

}i

As required by the TDL Comm Layer framework, the StandardFlexray-
CommLayer emits an array of buffers of type tdl char. In order to save space
and an additional mapping of those buffers to the FlexRay controller buffers,
we map them one-to-one and order them according to the buffers configured
inside the FlexRay controller.

TDL Comm Layer framework frame structures (emitMainC FlexrayFrames())

Node1/tdl_main_.c

tdl comm FrameStruct frameO = {0,
tdl comm FrameStruct framel {1,
tdl_comm FrameStruct frame2 {2,
tdl_comm FrameStruct frame3 {3,

0}; //buffer index, size, current position
0}; //buffer index, size, current position
0}; //buffer index, size, current position
0}; //buffer index, size, current position

SO o
~ S~ 0~ 0~

static tdl comm Frame frames[] = {
&frame0,
&framel,
&frame?2,
&frame3,

}i

static tdl comm FrameEntry frameSendEntries[] = {
{1, 4895},
{2, 9842},
{_ll _l}l

}i

static tdl comm FrameEntry frameReceiveEntries[] = {
{0, 154},
{_ll _l}l

}i

The TDL Comm Layer framework requires data structures describing
synchronous TDL frames. These structures are tdl comm FrameStruct
containing the buffer index, the frame size and the current position of the data

Platform-Specific Adaptations for FlexRay 127

pointer of the frame, an array of type tdl comm Frame containing all frames,
and finally two arrays of type tdl comm FrameEntry indicating the time frames
are sent or received respectively.

TDL Comm Layer framework configuration (emitMainC TDLCommConfig ())

Node1/tdl_main_.c
tdl _comm Config commConfig = {
5000, /* partition period of the node */
10000, /* bus period of the cluster */
frames, /* pointer to frame array as defined above */
3, /* number of synchronous frames */
1, /* size of tag in bytes */
frameSendEntries, /* pointer to frame send table as defined above */
frameReceiveEntries, /* pointer to frame receive table as defined above */
decodeMessage, /* pointer to message decoding function as defined above */
}i

Finally, a struct of type tdl comm Config is generated which contains all
values and data structures the TDL Comm Layer framework must be initialized
with.

TDL Comm Layer framework initialization (emitMainC TDLCommInitCall())

For the initialization of the TDL Comm Layer framework, this hook function
emits a call to the TDL Comm layer init function with a reference parameter
pointing to the struct containing the TDL Comm layer configuration data.

Periodic task (emitMainC PeriodicTaskBody ())

Node1/tdl_main_.c
static void periodicTask(rtk p task control block pTCB) {
if (isSyncTDL()) {
tdl comm receiveFrames();
receiveAsyncFrames () ;
tdl_machine step();
}
}

A default body for the periodic task is emitted. In the distributed case, the TDL
Comm Layer framework function for the reception of synchronous frames
(tdl comm receiveFrames()) and the function emitted by
StandardCCommLayer for the reception of asynchronous frames
(receiveAsyncFrames ()) must be called before the TDL Machine step function.
The first execution of these three functions is delayed until the startup
synchronization algorithm indicates that all nodes in the system are ready to
start execution.

128 Platform-Specific Adaptations for FlexRay

Embedded- <<interface>>
CPlatform - Embedded-
CCommlLayer
AN
Standalone-
<<interface>> KJ----- FlexayCommLayer
Flexray-
CommLayer --------}-- Standard-
FlexrayCommLayer
StandaloneNodeRenesas-
<<interface>> [1._--4
NodeRenesas- < CommLayer
Platform NodeRenesas-
CommLayer K}----------- FlexrayNodeRenesas-

CommLayer

Figure 44. Node Renesas communication layer class diagram

5.6.2. Node Renesas Communication Layer

The interface NodeRenesasCommLayer represents the communication layer interface
for the Node Renesas platform. We provide two implementing classes:
StandaloneNodeRenesasCommLayer and FlexrayNodeRenesasCommLayer (see Figure
44). The former only emits a periodic task suitable for a standalone system which
solely calls the TDL Machine step function. The latter however generates all the
appropriate code to configure and utilize the Bosch E-Ray FlexRay controller used in
the Node Renesas prototyping hardware.

FlexrayNodeRenesasCommLayer provides the following functionality:

¢ FlexRay controller buffer assignment (getBuffers())

This function is already implemented in FlexrayCommLayer but is overridden
by FlexrayNodeRenesasCommLayer as the Bosch E-Ray FlexRay controller
requires that the buffer with index 0 is assigned to a FlexRay key slot. This
implementation orders the buffers in a way so that this requirement is fulfilled.
Note that consequently also the TDL Comm Layer framework buffers must be
reordered, as there is a one-to-one mapping between them and the FlexRay
controller buffers.

e Application cycle length (getApplicationCycleLength())

The AES operating system of the Node Renesas requires that its application
cycle value is a 2" multiple of the FlexRay communication cycle period.
FlexrayNodeRenesasCommLayer calculates a suitable value so that this
requirement is met.

Platform-Specific Adaptations for FlexRay 129

e Configuration files for COMMSTACK FlexRay controller driver (emitCCFiles ())

The communication layer emits configuration files which adhere to the
requirements of the Node Renesas COMMSTACK FlexRay controller driver. They
contain all cluster and node parameters and the configuration of the controller
buffers in an encoding suitable for the Bosch E-Ray FlexRay controller. The
emitted files comprise COMMSTACK_ <nodeName> Cfg.h, COMMSTACK
<nodeName> Cfg.c and COMMSTACK <nodeName> Memory Cfg.h.

e Main file includes (emitMainC Includes())

Node2/tdl_main_.c

#include "tdl comm noderenesas.h"
#include <dcsCstFr.h>

#include "COMMSTACK Node2 Cfg.h"

Includes are emitted for the platform-specific TDL Comm Layer plug-in
(tdl comm noderenesas.h), the DeComSys COMMSTACK FlexRay controller
driver (desCstFr.h) and the generated COMMSTACK configuration header file.

e Periodic task (emitMainC PeriodicTaskBody())

Node2/tdl_main_.c
static void periodicTask (void) { // This task is called every partition period
tdl comm noderenesas_syncFlexRay () ;
if (isSyncTDL()) {
tdl comm receiveFrames();
receiveAsyncFrames () ;
tdl machine step();
}
}

FlexrayNodeRenesasCommLayer overrides the emitMainC PeriodicTask-
Body () function to add a call to synchronize the FlexRay bus clock to the AES
clock (tdl comm noderenesas syncFlexRay ()). Furthermore, it adds a call to
handleAsyncTimers () inside the if clause that all timer triggers for
asynchronous activities are handled correctly.

e Makefile (emitMake Content())

The compiler flag DISTRIBUTED is added. This flag configures the TDL Runtime
System for distribution.

5.6.3. MicroAutoBox Communication Layer

The communication layer interface for the MicroAutoBox platform,
MicroAutoBoxCommLayer, and its implementations are similar to those for the Node
Renesas. Again, two implementations exist: standaloneMicroAutoBoxCommLayer for
single node systems and FlexrayMicroAutoBoxCommLayer for distributed FlexRay
systems. The differences to the Node Renesas version are adaptations to the
MicroAutoBox operating system and the use of another type of FlexRay controller.
The MFR4300 controller by Freescale requires a different configuration format and
buffer handling.

The following functionality is provided by FlexrayMicroAutoBoxCommLayer:

¢ Main file includes (emitMainC Includes())

Node1/tdl_main_.c
#include "tdl comm mabx.h"
finclude <dsfrl1401.h>

130 Platform-Specific Adaptations for FlexRay

| #include <dsfral.h> |

The added include files for distributed systems are the platform-specific TDL
Comm Layer framework header tdl comm mabx.h and the MicroAutoBox
FlexRay driver headers dsfr1401.h and dsfral.h.

e FlexRay synchronization (emitMainC TimingControlFunctions())

Node1/tdl_main_.c
static UInt32 lastTSmit;

static void syncTask(rtk p task control block pTCB) {
ts_timestamp type ts, syncts;
syncts = tdl comm mabx getTS();
if (syncts.mit + 10000 - lastTSmit > 2 * 10000) {
rtk it task register rel (S INTERVAL A, 0, RTK NO SINT, 0.0f, O,
0.0, &syncts);
rtk it task register rel(S INTERVAL A, 0, RTK NO SINT, 0.0050f, O,
0.0, &syncts);
lastTSmit = syncts.mit;
}
}

In a distributed system connected via a FlexRay bus it is essential that the
operating system is synchronized to the communication bus. On the
MicroAutoBox, this is done with the help of a sync task which is called twice as
often as the TDL Machine on a particular node. This over sampling ensures that
there is at least one invocation of the sync task in every FlexRay cycle. The
sync task «calls a function of the dSPACE FlexRay API Vvia
tdl comm mabx getTS() to obtain the timestamp of the beginning of the next
FlexRay cycle. Subsequently, all TDL Machine steps inside the next cycle are
scheduled with the help of this timestamp wusing the function
rtk it task register rel (). The sync task only does this if the difference
to the last timestamp is over a certain threshold as otherwise all TDL Machine
steps would be scheduled multiple times in the next FlexRay cycle.

¢ FlexRay controller configuration (emitMainC CCConfig())

Configuration for the MicroAutoBox FlexRay controller (MFR4300) needs to be
generated. It is stored in the tdl main.c file in a function named cfg CTRO ().
It uses the dSPACE FlexRay API to set the controller registers containing all
cluster and node parameters and the configuration for the communication
controller buffers.

¢ Makefile (emitMake Content())

The compiler flag DISTRIBUTED is added. This flag configures the TDL Runtime
System for distribution.

5.6.4. Cluster Platform Plug-In

For a TDL FlexRay system to be able to exchange data between nodes, the abstract
scheduling data generated by the Comm Scheduler must be transformed to a
complete set of FlexRay parameters. For this purpose, the class FlexrayPlatform
combines the implementation of two interfaces as shown by Figure 45. It represents
a cluster platform plug-in in the context of the code generation framework (abstract
class AbstractClusterPlatform) and additionally acts as a scheduling plug-in to the
Comm Scheduler (interface CommSchedulerPlugin). Furthermore, it uses the
FlexrayProperties class for the calculation of FlexRay cluster and node parameters.

Platform-Specific Adaptations for FlexRay 131

CommProperties

<<interface>>
CommSchedulerPlugin

T

T

Flexray- AbstractCluster- <<interface>>
Properties Platform DistributorClusterPlatform
N

FlexrayPlatform

Figure 45. FlexrayPlatform class diagram

FlexrayPlatform must implement the following scheduling functions as specified by
the commSchedulerPlugin interface described in subsection 4.3.4. Table 10 lists all
interface functions and describes their implementation in FlexrayPlatform.

public

CommProperties getCommProperties ()

Returns a FlexrayProperties object which extends the
CommProperties class by FlexRay-specific functionality.

public int

getCommPeriod (int mspGCD)

The returned communication period must be an integer
divider of mspGCD, which is the maximum possible
period calculated as the GCD of all mode periods and
mode switch periods of the sending modules of a
distributed TDL system. FlexRay has a restriction for the
maximum length of the cycle period of 16000
macroticks. A macrotick can be configured to last
between 1 and 6 ps. When the passed mspGCD is too
large to match the maximum length, it is divided by an
integer value so that the resulting cycle period is below
the limit.

public int

getTagSize (int nofMsgs, int msgID)

Regarding the size of the message tag with respect to
the number of messages and the message ID,
FlexrayPlatform returns a size of 1 if the number of
messages is below 2% and a size of 2 if it is below 2%,
For a higher number of messages it throws an exception.
Note that this calculation does not depend on the
message ID, i.e. the second parameter is ignored.

132

Platform-Specific Adaptations for FlexRay

public Frame

newFrame (int senderNodeID)

This factory method returns a new instance of the class
Frame, i.e. it uses the default frame class.

public AsyncFrame

newAsyncFrame (ModuleReader.Task asyncTask)
This factory method returns a new instance of the class

AsyncFrame, i.e. it uses the default class for
asynchronous frames.

public int

getMaxFrameSize ()

Returns the maximum frame payload size according to
the corresponding property obtained from the
FlexrayProperties class.

public void

setTiMap (Map<String, Map<String, Map<String,
TaskInvocation[]>>> tiMap)
This method passes information about task invocations
to the plug-in. It is passed on to the commLayer of the
individual nodes which are responsible for task schedule
generation.

public double

scheduleFrameWindows (List<Frame> frameWindows)

This core function of the plug-in interface assigns
concrete timings, i.e. FlexRay slot numbers, to the list of
frame windows passed by the Comm Scheduler. The
assignment algorithm optimizes for minimal bandwidth
usage on the FlexRay bus. There is a trade-off between a
large static slot size that minimizes overhead but might
waste bandwidth by having small TDL frames occupy a
complete FlexRay slot and having a small static slot size
that introduces a large overhead as every slot introduces
additional overhead. The lower limit for the slot size is
the size of the largest frame as frames are not split
across multiple slots. The maximum slot size is bounded
by the maximum of 127 2-byte-words set in the FlexRay
specification.

The slot assignment algorithm works as follows: First the
frame windows obtained from the Comm Scheduler are
sorted by decreasing deadline time, i.e. the frame with
the latest deadline is first. Then for all slot sizes large
enough to hold the largest frame it is searched for a
valid frame to FlexRay slot mapping. This is done by
mapping every frame from the sorted list to the latest
FlexRay slot still available. Of all static slot sizes the one
which leads to a valid mapping and produces the FlexRay
schedule with minimal bandwidth usage is selected. As a
last step all frames in the supplied list are updated with
the start and end time of the assigned FlexRay slots.

For FlexRay startup, the protocol requires that either two
or three nodes are configured as so-called cold start
nodes. These nodes follow a special startup procedure
using the slots assigned to them to initialize the FlexRay
communication cycle. The slot assignment algorithm
ensures that these startup requirements are fulfilled.

Platform-Specific Adaptations for FlexRay 133

Whether a node is a cold start node or not is specified
via a property by the user. The plug-in checks the
number of cold start nodes in the cluster and
automatically assigns them a sending slot to be used for
startup frames.

The return value of the function indicates the quality of
the scheduling solution. It is calculated on basis of the
bandwidth used by the scheduled slots including
overhead, such as gaps between slots and unused parts
of slots. This way a schedule with unnecessary large
slots yields a lower metric then one with the same data
transferred in slots that are mostly filled to their size.

public void | scheduleAsyncFrames (List<AsyncFrame> asyncFrames,
List<Frame> frames)

This function performs the mapping of asynchronous
frames to communication protocol specific IDs which are
then stored in every AsyncFrame object. To ensure their
transmission via FlexRay, asynchronous frames must be
assigned to minislots of the dynamic segment and must
be sent and received at the correct time instants. We
require the user to specify the number of minislots and
thereby the size of the dynamic segment. The scheduling
algorithm then assigns every asynchronous frame to an
individual minislots in order of their priority, which is
indicated by the order of the passed list. As ID the
FlexRay minislot number is used. When no or not enough
minislots are available, we output a code generation
error and abort the generation process. The sending of
asynchronous frames, i.e. writing them to the
appropriate buffers of the FlexRay controller, is done as
soon as the ports originating from asynchronous tasks
are updated. Receiving is done right before the TDL
Machine runs, which is when also all synchronous frames
are received.

Table 10. Implementation of the CommSchedulerPlugin interface by
FlexrayPlatform

FlexrayPlatform provides user editable properties to the TDL:VisualDistributor via
the PropertiesProvider interface, which is part of the
DistributorClusterPlatform interface (see 5.4). For a Connection object of the
data model, representing a Ilink between a DistributorNode and a
DistributorCluster node, a FlexrayNodePropertyPage is provided. It lets the user
determine whether a specific node is used for FlexRay startup and for clock
synchronization. Furthermore, for a DistributorCluster the class
FlexrayPropertyPage (see Figure 47) provides a minimal set of FlexRay properties
and options to import and export FIBEX files. The properties are required by the
automatic property calculation algorithm implemented in the FlexrayProperties
class.

134

Platform-Specific Adaptations for FlexRay

£ TDL:VisualDistributor - Producer-Consumer Example

File Edit Help
D@ o~ 2
- System Property Yalue
=[5 Clusters
H-lg FlexR.ay Properties Compute Automatically | v [_Edit |
Zonnecked Modes ||FIEXRE'Y Channel(s) A
..... = hodel ||Minimum Communication Period [us]]
: S B ndez ||Maximum Communication Period [us]]
Bl Sender Modules ||Minimum Frame Size [bytes) 0
: iende; DndNDdBIN de1 ||Maximum Frame Size [bykes] a
syncsender on Mode
Rereivor on Node? [Mumber of Cold Start Attempts [2-31] | 30
AsyncRecsiver on Mode2 ||Number of Minislots =
[#-[) Nodes Max, Active Stars in Path]
-7 Modules

BX

Impaort FIBEY File
Export FIBEX File (Name only)
Export FIBE= Yersion

[Clusterl FlexRay |

Figure 47. FlexRay cluster property page

& FlexRay Property Editor - FlexRay

. Compute Fill Reset w0 rx
*_M Property Walue Min Max Unit Mess. .,

coml Nodel X 1 oe ekt tempts 0 2 a1 ~

e ModeZ ¥ 70 —
qdCASRxLowiax a1 a7 a9 gdBit
gdDynamicSlotIdiePhase 1] z Minislok
qgdMinislot 10 Z 53 MT
gdMinislot ActionPoink OFf sek 5 1 31 MT
qgdskaticSlot 51 4 661 MT Error
qdSymbalwindow i 0 142 MT
qdTSSTransmitker 6 K} 15 qdEit
qd'wakeupSymbolRxIdle 59 14 9 qdEit |
gdt akeupSymbolFcLow 55 11 59 qgdEBit
qdi akeupSymbolFcwindo 301 TG 301 gdBit
gdiiakeupSymbolTxIdle 130 45 180 gdBit
gdii akeup3ymbol TxLow a0 15 G0 gdBit
glistenMoise 16 2 16
gMacroPerCycle 10000 10 16000 MT Eerror
gMaxwithoutClockCorrectionF... | 10 1o 15 evenfodd ...
gMaswithoutClockCarrectionP... | 10 1 15 evenfodd ...
arlumberOfMinislats 5 0 756 errar
nburnherOFSEak-Shnt 194 1025 %
Property ‘gdActionPointOffset' (70) is out ofvalid range [1..63 wWT].

Figure 46. FlexRay Property Editor

In addition, both property pages provided access to another dialog which we call the
FlexRay Property Editor (see Figure 46). It is used to view and edit every single
FlexRay node and cluster parameter. While the automatic parameter calculation of
the class FlexrayProperties is feasible for prototyping as it speeds up the
development process, for series production it may be required to alter parameters to
tailor them to specific requirements such as maximization of bus throughput or the
hardware used. The editor aids the user by checking the ranges and constraints of
every parameter and thereby prevents that an invalid set of parameters is
generated, which in almost all cases would lead to a non-functioning FlexRay system.

Platform-Specific Adaptations for FlexRay 135

The following depicts the Comm Schedule file which contains the complete
communication schedule of the producer-consumer example. It is written by the
Comm Scheduler as described in section 4.2. It contains the topology of the network,
the mapping of TDL modules to nodes and all details on the timing of synchronous

and asynchronous frames and what data is transferred by them.

FlexRay/commschedule.properties

#

The name of the cluster:

#

tdl.commschedule.clusterName = FlexRay
#

The period of the communication cycle in us:
#

tdl.commschedule.commPeriod = 10000

#

Network configuration:

#

tdl.commschedule.nodes = nofNodes

tdl.commschedule.nodes.i = nodeName

#

tdl.commschedule.nodes = 2
tdl.commschedule.nodes.0 = Nodel
tdl.commschedule.nodes.l = Node2

#

Module assignment:

#

tdl.commschedule.modules = nofModules
tdl.commschedule.modules.i = moduleName:key:nodelD
#

tdl.commschedule.modules

N

tdl.commschedule.modules.0 = Sender:-1984218304:0
tdl.commschedule.modules.l = AsyncSender:-1450699287:0
tdl.commschedule.modules.2 = Receiver:1793272030:1
tdl.commschedule.modules.3 = AsyncReceiver:616832004:1

#

The list of frames to be sent on the network:

#

tdl.commschedule.frames = nofFrames

tdl.commschedule.frames.i = senderNodeID:startTime:endTime:nofBytes
tdl.commschedule.frames.i.receivers = nofReceivers

tdl.commschedule.frames.i.receivers.j = receiverNodelID
#

3
= 1:101:154:1
.receivers = 1

tdl.commschedule. frames =
tdl.commschedule. frames.0
tdl.commschedule. frames.0
tdl.commschedule.frames.0.receivers.0
tdl.commschedule.frames.l = 0:4895:4948:5
tdl.commschedule.frames.l.receivers = 1
1
2
2
2

tdl.commschedule.frames.l.receivers.0 = 1
tdl.commschedule.frames.2 = 0:9842:9895:5
tdl.commschedule.frames.2.receivers = 1

tdl.commschedule.frames.2.receivers.0 = 1

#

The messages to be sent in frames:

#

tdl.commschedule.messages = nofMessages

tdl.commschedule.messages.i =

frameID:taskID:modeID:taskRelease:modePhaseNo:nofBytes:nofTagBytes
#

tdl.commschedule.messages = 2
tdl.commschedule.messages.0 = 1:0:1:0:0:4:1
tdl.commschedule.messages.l = 2:0:1:5000:0:4:1

#

The tasks which produce output needed on the network:
#

tdl.commschedule.tasks = nofTasks
tdl.commschedule.tasks.i = moduleID:name:nofBytes
#

tdl.commschedule.tasks = 2
tdl.commschedule.tasks.0 = O:produce:4
tdl.commschedule.tasks.l = l:produce:4

#

136 Platform-Specific Adaptations for FlexRay
The types of ports sent over the network:
#
tdl.commschedule.types = nofTypes
tdl.commschedule.types.i = basicType:nofBytes
tdl.commschedule.types.i = 'struct':nofBytes:module:type
tdl.commschedule.types.i = 'array':nofBytes:module:type:nofElems:elemTypelD
#

=

tdl.commschedule.types =

tdl.commschedule.types.0 = int:4

#

The members of structs needed on the network:
#

tdl.commschedule.members = nofMembers
tdl.commschedule.members.i = structTypelID:name:memberTypelD

#

tdl.commschedule.members = 0

#

The output ports which are sent over the network:
#

nofPorts
= modulelD:taskID:name:typelD

tdl.commschedule.ports =
tdl.commschedule.ports.i
#

tdl.commschedule.ports =

N

tdl.commschedule.ports.0 = 0:0:0:0
tdl.commschedule.ports.l = 1:1:0:0

#

The association of tasks and output ports:
#

tdl.commschedule.taskPorts =
tdl.commschedule.taskPorts.i =
#

tdl.commschedule.taskPorts = 2
tdl.commschedule.taskPorts.0
tdl.commschedule.taskPorts.1

nofTaskPorts
taskID:portID

0:0
1:1

The async frames needed on the network:
tdl.commschedule.asyncFrames =
tdl.commschedule.asyncFrames.i = asyncFrameNr:senderNodeID:taskID:nofBytes
tdl.commschedule.asyncFrames.i.receivers = nofReceivers
i

tdl.commschedule.asyncFrames.i.receivers.j = receiverNodeID

nofAsyncFrames

e

tdl

tdl.
tdl.

.commschedule.
commschedule.
commschedule.

asyncFrames
asyncFrames.

= 195:0:1:
receivers

ol >
I~

0
asyncFrames.O.
0

tdl. asyncFrames.O.receivers.

I
i

commschedule.

Incremental Scheduling via FIBEX

We have learned that for instance in the automotive industry it is an important
requirement to be able to integrate new systems with already existing components
and communication buses. Therefore we developed a method we call incremental
scheduling that enables to combine a possibly hand-written, already existing FlexRay
schedule with the TDL approach of automatic schedule generation. We use the FIBEX
data format as a means of data exchange as it is already supported by most FlexRay
tools. FIBEX is an XML file format describing the complete communication
infrastructure of a car, with FlexRay being only one of the bus protocols it supports.

The FlexrayPlatform class offers both FIBEX import and export. The export
functionality enables that FlexRay systems built from scratch can subsequently be
extended using third-party tools. When extending the schedule of an already existing
schedule via FIBEX import, all global FlexRay parameters are taken from the FIBEX
file. FlexrayPlatform must then ensure that these parameters are obeyed as
otherwise FlexRay communication is not possible. The parameters include the length
of the FlexRay period and the number and size of static and dynamic slots.
Furthermore, all already occupied slots are identified and then taken into account

Platform-Specific Adaptations for FlexRay 137

when assigning TDL frames to FlexRay slots. Legacy FlexRay signals are mapped to
TDL modules by using sensors and actuators. The TDL:VisualDistributor provides
dialogs which let the user select the FIBEX signal a sensor or actuator should read or
write respectively. See the next section for a case study using the incremental
scheduling functionality.

5.7. Case Study

In addition to the producer-consumer example which we used to demonstrate the
features of TDL and the TDL tool chain throughout the last chapters, we present an
additional case study in this section. It shows how TDL can be integrated with a
legacy FlexRay system using incremental scheduling. The setup consists of two Node
Renesas and one MicroAutoBox which are connected via FlexRay. One of the Node
Renesas nodes acts as a legacy node, i.e. its code is not obtained using the TDL tool
chain but created manually so that it sends and receives signals via the bus. In
correspondence to the legacy node's functionality, there is a FIBEX file provided
which describes the data it sends and receives and the parameters of the FlexRay
bus.

Figure 48 presents an overview of the data flow of the case study. All values
exchanged between nodes are transferred via a FlexRay bus to which all nodes are
connected to. Node Renesas 1 executes an Incrementer and a Decrementer module
which produce an incremented or decremented value respectively. The Decrementer
module changes the speed in which it decrements depending on the mode the
module is currently in. In one mode the rate in which the value changes is the same
as for the Incrementer module while in the second mode the rate is doubled. The

Node Renesas 1 Node Renesas 2
Analog output
Incrementer
Legacy
Button input

DL FE FpRp R — Code 4

Decrementer |- |- -l oo oo > S

Analog output
FlexRay bus

MicroAutoBox
Analog output
> Sum >

Figure 48. Legacy case study data flow

138 Platform-Specific Adaptations for FlexRay

Input Device Mapping: s

C‘ Frant Panel Buttan FIBEX: FlexRay

C' Analog 1O Chaninel =all= b

(¥ FIBEX: FlexRay ECL el -

© Manual Slot =all= v
Signal =all= L
il B2 VM ButtonPressed (8,1, 0,1, 00 J&
[Cancel l [QK]

Figure 49. Mapping of a TDL sensor to a FlexRay signal

mode switch is triggered by pressing a button during a defined interval. Both
modules send their output ports to the third module in the system named Sum. It
computes the sum of the two values and is executed on the MicroAutoBox node. The
outputs of Incrementer and Sum are also output using digital/analog converters on
the respective nodes.

The Node Renesas 2 legacy node runs code which transmits a Boolean value
indicating whether the front panel button 1 is pressed via the FlexRay bus and

2011-03-02 18:52:19 |F——————— 1k BoxAvg
DKOGAWS 4 3 Z005,5 S500M5A4in

24 Moinilk >

CH1 16:1 Edge CH1 4
8.508 Urdiv Auto
1] Full 9.000 U

Figure 50. Case study oscilloscope plot

Platform-Specific Adaptations for FlexRay 139

receives an 8 bit value which it outputs on its first digital/analog converter port. The
FIBEX file contains exact information about these signals and also about all FlexRay
cluster parameters. When importing a FIBEX file, the FlexRay scheduling plug-in
ensures that the newly added nodes executing TDL modules integrate with these
existing parameters and uses the communication slots specified in the FIBEX file. The
mapping of FlexRay signals to sensors and actuators of the TDL modules is
performed using the sensor and actuator device mapping dialog of the
TDL:VisualDistributor. Figure 49 illustrates the mapping of the button signal to the
sensor s of the Decrementer module.

Figure 50 depicts an oscilloscope plot of the running case study for a period of 5
seconds. During this time, the Decrementer module changes its mode from the slow
to the fast rate mode and back. The first channel in yellow shows the output signal of
the Incrementer module picked up by a probe connected to the first analog output of
Node Renesas 1. Channel 2 in green indicates the output of the legacy node Node
Renesas 2 which obtains the decrementer value directly from the FlexRay bus.
Finally, the channel at the bottom in purple plots the output of the signal produced
by the Sum module computed on the MicroAutoBox.

6. TDL Workflow

This chapter is devoted to an analysis of the workflow typically employed in the
industry when developing components of distributed embedded systems. Specifically,
we will focus on the automotive industry, which is characterized by a strict
separation of concerns between the Original Equipment Manufacturer (OEM) and its
suppliers. It is based on hardware components or Electronic Control Units (ECUs),
where the OEM specifies the network layout and communication system properties
before suppliers develop individual ECUs implementing the required functionality. We
argue that platform abstractions such as envisioned by AUTOSAR or the Logical
Execution Time (LET) abstraction would allow a fundamental overhaul of the
development workflow, eventually leading to a significant gain in productivity and
flexibility. We analyze the typical workflow and two standard development tools
which are commonly used and compare both to the development workflow employed
by tools based on the Timing Definition Language (TDL) which represents a LET-
based language. This chapter is an extended version of the work published in [40].

6.1. Introduction

So far, the principal means for structuring the growing amount of software in a car is
the splitting of functionality into separate Electronic Control Units (ECUs). An ECU
corresponds to a software module. This affects the division of work between an
Original Equipment Manufacturer (OEM) and its suppliers and thus the overall
development workflow. The OEM specifies all signals sent between the ECUs in the
overall electronic system and the complete communication infrastructure which
carries them. These signals and the topology information, together with a detailed
functional specification, are the basis for the development work of the suppliers,
which eventually provide one or multiple ECUs to the OEM who is then responsible
for the final integration and testing of the overall system.

This approach requires quite a detailed knowledge of the electronic system from the
beginning, as the ECUs depend on the communication parameters and signals and
vice-versa. Especially when using the FlexRay protocol [34] there are numerous
parameters, such as the division into a so-called static (time-triggered) and dynamic
(event-triggered) part, the communication cycle length and static slot size, that need
to be agreed on in an early phase of the development process as otherwise the ECUs
are not able to communicate. Consequently, changes in a later phase are expensive,
as they require adaptations in all ECUs of potentially different suppliers.

The original vision of AUTOSAR [11] was to abstract from platform details to allow
developing a software component once and then be able to deploy it automatically on
any hardware platform, as depicted in Figure 51. This would have held the potential
to also change the rigid development process. The Timing Definition Language shares
this vision with AUTOSAR. One consequence of an adequate platform abstraction
would be that the communication schedule is not a requirement which suppliers need

142 TDL Workflow

develop once [Component C J

deploy automatically
on any platform

[— ———————

Single-node
platform P2

Single-node
platform P1

Distributed
\ platform P3

S o ===

—— -

Figure 51. Automatic platform deployment

to obey, but which can be generated automatically as a last step when the OEM
integrates all components.

In the following we first take a closer look at the AUTOSAR standard. Then we outline
and compare a) the non-AUTOSAR workflow based on Elekrobit's EB Designer Pro b)
an AUTOSAR-workflow based on Vector's DaVinci Tool Suite and c) a TDL workflow
based on the TDL tools integrated in MATLAB/Simulink [16]. We argue that b) is not
sufficient to significantly simplify the development workflow in comparison to a) and
that only abstractions such as LET that allow the automatic generation of platform-
specific code will do so.

6.2. AUTOSAR

AUTOSAR stands for AUTomotive Open System ARchitecture and is an international
standard developed by major companies of the automotive industry, including
Original Equipment Manufacturers (OEMs), suppliers, and tool developers. It aims at
an industry-wide standardized automotive software architecture in order to ease
software development and the integration of software systems between OEMs and
suppliers. One of the main motivations for AUTOSAR was the increasing complexity
of automotive software and systems, induced by the growing number of networked
ECUs. To tackle this challenge, AUTOSAR introduces an architectural level of system
design and fosters the modularization of systems and the portability and reuse of the
resulting components, especially targeted at distributed automotive systems.

These goals are only reachable after a paradigm shift from traditional ECU-oriented
software development to a function-oriented development process, which is exactly
what AUTOSAR tries to accomplish. A specific use case would be the process of
combining software of multiple vendors on a single ECU. Previously, this was difficult,
as specific functionality typically was provided by one vendor which delivered one
complete ECU to be integrated in the system by the OEM. AUTOSAR now provides
the means so that OEMs can split up the system on a software component level and

TDL Workflow 143

allocate those components to ECUs. This process of ECU consolidation is vital, as the
growing number of functions required in future cars would otherwise lead to an
equally growing number of ECUs, being expensive, difficult to maintain, and error-
prone. Furthermore, a lot of functions in today's cars involve multiple sensors values
and actuators shared by other functions scattered across the whole vehicle, making
the one-ECU-per-function approach unfeasible.

In order to reach its goals, AUTOSAR focuses on the following three areas [41]:

e Architecture

A layered architecture provides independence of application software from
specific hardware platforms. It consists of three main layers: The application
software, the Run-Time Environment (RTE) and the Basic Software (BSW). The
BSW is the bottom layer which abstracts from ECU-specific hardware and can
be seen as a standard operating system for the automotive industry. It is
utilized by the RTE middleware layer, which consists of generated code
according to the connections modeled between components.

e Methodology

The AUTOSAR methodology facilitates XML exchange formats to configure the
Basic Software and to enable the exchange of components across suppliers
and OEMs and their deployment to ECUs. The ECU development process is
divided into a System View, an ECU View, and a Component View. Although
AUTOSAR prescribes no timeline and no roles and responsibilities, the typical
work-split is that the system configuration is performed as a first workflow
step by the OEM and ECU configuration and component implementation is
subsequently done by the suppliers. System configuration mainly consists of
the specification of the Virtual Functional Bus (VFB), which describes the
communication relationships between components in a way which abstracts
from whether components are eventually executed on the same ECU or not. In
the next development step, components are assigned to ECUs, ECU-specific
RTEs are generated, and ECU and component templates are extracted, which
form the basis for the subsequent development of those ECUs and
components.

e Application interfaces

These are interfaces of typical automotive applications, which are specified in
order to ease their development and integration. According to the AUTOSAR
motto "compete on standards, cooperate on implementation," the concrete
implementation of these applications is not covered by the standard.

AUTOSAR also leads to better and standardized documentation, especially as it
includes the explicit description of networks, which previously was only available in
prose form and is now structured in the form of interface definitions. Furthermore, it
enables to automate certain development steps, e.g. by generating template code for
components out of the system level description. This speeds up development and
ensures consistency throughout the whole process.

Release R4.0 of the AUTOSAR standard includes timing extensions enabling the
specification of timing properties for the different development phases. Those
extensions can be used at VFB, System, and ECU level to describe the timing
behavior of an AUTOSAR system. The basic entity in the timing specification is an
event. Events are chained together to form so-called timing chains which include all
events occurring between a defined stimulus and a response in chronological order.

144 TDL Workflow

This allows describing end-to-end timing constraints which span across multiple
views and may also include physical sensors and actuators.

6.3. Current Workflow and Tools in the Automotive Industry

According to [42], the automotive systems engineering process consists of the
following phases: First, an analysis of the requirements is performed. The system
level requirements are then decomposed into sub-functions. In a step called
partitioning, those sub-functions are mapped to ECUs, sensors and actuators. In
addition, appropriate bus systems are selected. Next the workflow continues with the
actual component development and finally concludes with system integration and
validation.

The tools available for developing distributed automotive systems reflect the
described workflow which is commonly employed in the industry. Typically one has to
specify the communication properties as one of the first steps in development as all
further steps depend on it. We take a closer look on two established tools, namely
Elekrobit's EB Designer Pro and the Vector's AUTOSAR-based DaVinci tool suite.

6.3.1. EB Designer Pro

EB Designer Pro by Elekrobit [10] (formerly DECOMSYS::DESIGNER_PRO) is a tool
for the design of distributed real-time systems using the FlexRay communication
protocol. Figure 52 illustrates its main user interface. The tool aids the user to set up
all FlexRay parameters and produces configuration files for FlexRay controllers and
the operating system running on the ECUs of the system. Task functions must be
provided separately. The tool is available in a full version and also as two separate
units, the EB Designer Pro <SYSTEM>, which is limited to OEM design tasks and the
EB Designer Pro <ECU>, limited to design tasks performed by ECU suppliers. The

il DECOMSYS::DESIGNER_PRO 4.2.0 (02.09.2006) - New File 1

! Fle Operaton View Tools Help

i
Opcatontindon 7 >
| Home More Information *
Protocol Configuration
FlexRay Configuration Wizard Protocol Conﬁguration

Define FlexRay protocol parameters.

l T :‘:‘;mun\n-..cn.
Hetwork
Static segment Dynamic segment Symbol window |EG—

.....

optional optional

Communication Planning Sym NIT|
ECU Software siot 1 2 I . J— win 1

ECU Configuration

LogWindow a4 x

Date Time Plugin ! Message o’
a3/a7j07 16:15:22.618 Loader a OSEKtimeNODE. dll loaded
03f07/07 16:15:22.618 Loader B Loading C:/Work/Software/DECOMSYS/DESIGNER, _PROPlugins /OSEKtimePPC. ...
03f07/07 16:15:22.6458 Loader § OSEKtimePPC loaded
Q3/a7j07 16:15:22.6498 Loader e Loading C:/Work/Software/DECOMSYS [DESIGNER, _PRO,/Plugins /QSEKimes 12x.dll... 2
MMMMMM PPy - P P}

| Ready

Figure 52. EB Designer Pro Main User Interface

TDL Workflow 145

System Requirements

N/

Specify network topology (ECUs and buses)

N/

FlexRay protocol specification

N/

Communication planning (FlexRay slot assignment)

N/

ECU hardware refinement (CPU and FlexRay controllers)

N\

ECU software refinement (task scheduling)

N\

Compile & link ECU binaries

Figure 53. EB Designer Pro workflow overview
(white: OEM, gray: supplier)

developer is guided step-by-step through all required settings to obtain a working
system. The steps are divided into a system part and an ECU part which corresponds
to the two versions of EB Designer Pro as mentioned above.

Figure 53 outlines the complete development workflow of EB Designer Pro. The first
step in the system part is the architecture definition, where the network topology
including the number of ECUs and communication controllers in the system and the
bandwidth of the FlexRay bus is specified. Next, the detailed settings of the FlexRay
protocol must be entered using an optional wizard. The wizard and further parameter
entry forms support the user by checking the supplied properties against the
constraints of the FlexRay specification. The system part is then concluded with a
step called communication planning, which involves the assignment of FlexRay
communication slots to ECUs in the system. To perform this step, at this point in
development it must be already known about the exact communication requirements
between nodes, i.e. which functions each node executes.

The next development phase is the ECU part which is typically done by one or more
suppliers, who are able to import all the settings the OEM has already specified in the
system part. The ECU workflow starts with an ECU hardware refinement step, where
the type of Microcontroller Units (MCUs) and FlexRay controllers are selected and
operating system parameters are specified. Next, the ECU software is refined by
defining application and system tasks and assigning them to MCUs. Finally,
automatic code generation for every ECU is triggered after the detailed configuration
of the communication layer. The code generated by EB Designer Pro consists of
operating system configuration files based on the tasks an ECU must execute and
FlexRay controller configuration files containing all FlexRay cluster and node
parameters.

146 TDL Workflow

System requirements

N/

Definition of software components & ports connecting them

N/

Mapping of software components to ECUs

N/

Detailed communication planning based on mapping (bus-specific)

\/

Definition of Runnables that implement software components

N\

Configuration of OS and communication layer

N

Compile & link ECU binaries

Figure 54. DaVinci Tools workflow overview
(white: OEM, gray: supplier)

6.3.2. DaVinci Tool Suite

The DaVinci tool suite by Vector Informatik [43] consists of three parts. The System
Architect and the Network Designer are typically used by OEMs, whereas the DaVinci
Developer is targeted at ECU suppliers. Every tool is used to perform distinct design
tasks according to the AUTOSAR methodology, as described in 6.2. See Figure 54 for
an overview of the workflow.

DaVinci System Architect is used to define AUTOSAR software components on an
abstract level, using AUTOSAR's Virtual Functional Bus abstraction. This means that
no functionality is specified, but only the interface and connections of components,
i.e. so-called ports that have a type and a data size. Figure 55 shows the System
Architect's user interface, depicting three interconnected software components. In
addition, a network of ECUs is defined and subsequently every software component
is mapped to an ECU where it is later executed. After this step, ports can be
distinguished by whether the associated software components are mapped to the
same ECU and therefore are ECU-local (so-called internal ports) or require network
communication as they are located on different ECUs (so-called external ports).

DaVinci Network Designer is available for different communication buses such as CAN
and FlexRay. It is used to set up all properties of the specific protocol, including
bandwidth, communication layout, frames and messages. The most important
workflow step is the assignment of external ports to messages so that the required
values for exchanging data between software components are transferred via the
bus.

On basis of the former specification of the system, an ECU supplier can then use
DaVinci Developer to create the complete ECU software. So-called Runnables must
be defined which are used as a container for user code and finally implement the
functionality of software components. Runnables then need to be mapped to
operating system tasks, which requires also a priority to be assigned to them.
Finally, the operating system and the communication layer must be configured
before the complete ECU software can be compiled and linked.

TDL Workflow 147

(il DaVinci System Architect - AutosarProject_UserManual.dvw - [Vehicle Project : AutosarDemontrator]

(F rie Edit View Options Window Help -2 ﬁ

D&l | & By B B | R B0, [BT 2 45 28 50

Project - +

fn".h Vehide Prajecs Network Topology Software Desian | Mapping | Date Meppig | Signal Fauting I
) g AutaszrDemontr... | | [] Vehide T o T T s T o T T -

DisplaylInfo::Displa...

Calibration

m!

Pressureinfo

Warnings
4 »

Library . x

#-[] Component Types | o C R s C S A I
#- TU Constants N . -

)77l Data Types L . WarningAlgorith... | =~ L L SensorValuePrep...

#)-B- Devices s . e PR -

- % Function Triggers

w1 Functions
) o~ Port Interfaces

Warnings
Calibration

4 Ay Signal Groups
& Signal Types
#-" Signals

PhysicalValut

< H PhysicalValues Pressureinfo H —

Name [vers... | o . .
‘ L ;IJ

" Works... [Fepastoy | (|| |+ [L[ATE]0]\ sheett

x

31 Cct 2008 17:24:09 - DavVinei System Architect Version 2.2.84 (SP4) started.
31 Oct 2008 1 9 - Mo stereotype definition file found 'C:\Work\Software\Vector DaVinci Tool Suite 2.2 (5P4)\Bim\Config\Stereotype.ini'.
Importing 12 predefined chjecta...

31 Cct 2008 17:24:19 - Workspace 'Ci\Fork\Software\Vector DaVinei Tool Suite 2.2 (SP4)\Data\lutosarProject UserManual.dvw' successfully opened.

é‘ Action Log | Messages | Find Results

*|| Component Type |
Hame VehicleSaftwareDema
Realzation Compasttion

25 y
= Properties | Port Prototppes Description
£ P type Pl

Select or move components No Cv [5= NUM

Figure 55. DaVinci System Architect user interface

6.3.3. Evaluation

In order to evaluate the flexibility of the workflow of the two tools, let us consider
the following example use case: For reasons such as ECU consolidation, a software
component of a previously completely specified system needs to be moved from one
ECU to another. This typically leads to a change in the communication requirements
for the involved ECUs and therefore also to a change required in the communication
schedule. For both tools this means that adaptations are required early in the
workflow, and as all subsequent steps depend on it, they all need to be reevaluated
and in many cases a redesign is necessary.

When using the EB Designer Pro, it depends on the concrete change that is required
to determine to which workflow step one has to go back. If it is sufficient to add or
change the contents of individual FlexRay slots, changes in the communication
planning workflow step are required. If this is the case, subsequent changes in the
ECUs are local to the ECUs involved in the relocation of the software component. If
however moving the component requires changes in either the slot size or the
communication cycle length, this leads to a change in the FlexRay protocol
configuration and thereby invalidates the design of all ECUs in the cluster. In this
case all FlexRay controllers must be reconfigured which potentially leads to a change
in their timing and consequently also a change to the behavior of every single task
on every ECU of the system.

Unfortunately, also the AUTOSAR-based DaVinci Tools provide only little support for
the described ECU consolidation use case. As the mapping of software components to
ECUs is done by the OEM early in the workflow, a change again invalidates all
subsequent steps to a certain degree. Most importantly, the communication planning

148 TDL Workflow

step, which is done manually with DaVinci Network Designer, is critical as it later is
the basis for ECU development with DaVinci Developer.

The AUTOSAR methodology is meant to promote a less ECU-centric workflow by
supporting the reuse of components and the freedom of moving them between ECUs.
Indeed, these tasks are simplified by the introduction of the standardized AUTOSAR
Basic Software and the introduction of the software component abstraction.
Unfortunately, it is questionable whether AUTOSAR can actually deliver its promises,
as core aspects of compositionality are not taken thoroughly into account. In specific,
the timing behavior of AUTOSAR components is still subject to the concrete
deployment of the components. It depends on complex timing issues regarding
factors such as the layout of the communication schedule, the CPU power of the
ECUs, the task priorities of AUTOSAR Runnables, and the timing of sensors and
actuators, among others. While the introduction of timing chains simplifies the
analysis of the timing of an AUTOSAR system, it does not lead to predictable timing
behavior as it relies on assumptions such as the frequency of event occurrence. As a
result, (a) moving a software component from one ECU to another requires
significant manual design and development efforts and (b) it is not guaranteed that
the component will behave equally as before. Consequently, the consolidated system
must again be rigorously tested.

One approach to tackle the lack of timing information in AUTOSAR is the TIMMO
(TIMing MOdel) methodology [44], which also influenced the design of the AUTOSAR
timing extensions. Its main purpose is to support the enrichment of design models
such as AUTOSAR with timing information, including timing requirements, timing
constraints, and timing properties, that specify the required and existing dynamic
behavior of systems. Although TIMMO aids developers in handling the timings
aspects of a system, it does not go as far as the possibility to automatically deploy a
component on any platform including a guarantee that its timing is preserved, while
this is a key feature of TDL using the LET abstraction.

6.4. The TDL Approach and its Impact on the Workflow

This section outlines the TDL approach and its corresponding tool chain and shows its
possible impact on the automotive industry's development workflow. As already
presented in detail in chapter 2, TDL is based on the concept of Logical Execution
Time (LET). It abstracts from the physical execution time of tasks and, in the
distributed case, from network communication. As long as both physical task
execution and potential network communication at runtime take place within the LET
of a task, the software will exhibit exactly the same observable behavior on any
(distributed) platform. It the following we will present how the TDL tools can be
applied to automotive software development, the advantages of a TDL-based
workflow and finally how the transition from today's workflow could be accomplished.

6.4.1. TDL Tools

The main TDL tools are the TDL:VisualCreator and the TDL:VisualDistributor, where
the former is used for platform-independent modeling and the latter for platform
mapping. The TDL:VisualCreator is used to create TDL modules, which are software
components that act as a unit of composition and distribution. Using the
MATLAB/Simulink integration feature of the TDL:VisualCreator allows the simulation
of the TDL system, which due to the LET abstraction is guaranteed to be equal to the
observable behavior on the platform. The TDL:VisualDistributor lets the user deploy
TDL modules on a potentially distributed hardware platform. It allows specifying the
platform, i.e. the ECUs and communication buses connecting them. After setting a
number of hardware-specific properties, the complete code for the system can be

TDL Workflow 149

System Requirements

\/

Specify TDL modules including functionality code

N/

Simulate behavior (optional)

S

Specify target platform (ECUs and buses)

N/

Deploy TDL modules on target platform

N/

Automatic generation of communication schedule and ECU glue code

N/

Compile & link ECU binaries

Figure 56. TDL tools workflow overview
(white: OEM, gray: supplier)

generated. This also triggers the fully automatic bus schedule generator which
determines the communication requirements of TDL modules by their deployment to
ECUs. Details on both tools can be found in section 2.6 and 2.7, where the latter
presents an overview of the complete tool chain.

Regarding the automotive workflow, the TDL tools can be used as shown in the
workflow overview in Figure 56. Suppliers may use the TDL:VisualCreator to model
software components according to requirements provided by the OEM. The OEM then
uses the TDL:VisualDistributor to map these TDL modules to the target platform and
finally, ECU code is generated automatically. Concerning intellectual property (IP)
protection, it should be noted that the TDL code of a component does not reveal any
details on its implementation apart from the timing requirements of (arbitrarily
named) individual functions. The functionality code itself does not have to be
provided in source code, but can also be delivered to the OEM as object code for
integration.

6.4.2. Evaluation

Considering the ECU consolidation use case as described in 6.3.3, it can be
performed with much less effort using the TDL tools. As no TDL modules need to be
changed in such a case, only the mapping of modules to the hardware platform must
be adapted in the TDL:VisualDistributor. This is done by assigning the module to
another ECU and setting the sensor, actuator and WCET properties accordingly. After
that, the code of the whole system-including the network schedule-is simply
regenerated. Note that if the schedulability check passes and code is generated the
observable behavior is exactly the same as before ECU consolidation, without
requiring additional testing.

6.4.3. Workflow Advantages

The TDL workflow offers a new level of flexibility and productivity for OEMs and
suppliers that range from testing to the optimization of hardware platforms.

150 TDL Workflow

In contrast to conventional tools and also the generic AUTOSAR methodology, the
specification of the communication network is not done manually and early in the
development workflow, but instead it is generated automatically as a last step. The
design of TDL modules is completely platform-independent and lets the supplier
focus on the functionality to implement without having the target platform in mind.
When using the Simulink-integrated TDL:VisualCreator, the behavior of the modeled
functionality can be accurately simulated. The supplier can also utilize the fact that
TDL modules behave exactly the same on any (distributed) platform by testing the
functionality in a real car by deploying it to any platform for which a TDL runtime
system exists. The fact that it is sufficient to test functionality only in the Simulink
simulation or on one hardware platform also greatly reduces the testing efforts.

For the OEM, the TDL methodology provides the flexibility of choosing the hardware
platform, i.e. the ECUs and all connecting communication infrastructure, after all
functionality is implemented and not beforehand. Suppliers do not provide complete
ECUs but instead TDL modules and corresponding functionality code. The mapping of
TDL modules to ECUs is then up to the OEM, who can then for example select
numerous less powerful nodes or a small number of powerful nodes in an effort to
reduce costs, to increase reliability or to improve electrical stability late in the
development process. Another example is the selection of the communication bus:
On basis of the actual bandwidth requirements, the OEM can choose for example
between CAN, FlexRay [34] and TTEthernet [45] without redesigning or retesting the
software, as it is guaranteed that it behaves the same as long as TDL is able to
generate code for the specific hardware platform.

6.4.4. Transition from Today's Workflow

As the TDL methodology introduces fundamental changes to the current workflow,
we are aware that the transition will be a difficult task. However, we think the
advantages outlined above are strong arguments and that this transition will quickly
pay off. This will be especially true if an OEM does not want to commit to a specific
communication protocol and wants to be able to change it easily. The TDL tools
provide a single development environment that can be adapted to existing target
platforms by developing a plug-in and runtime system for it. Choosing the hardware
late in the development process avoids pessimistic hardware choices or complex
analysis on what platforms might be adequate to perform the required functionality.

Suppliers can reuse their functionality code or Simulink models and construct TDL
modules out of them. However they need to make sure that the functionality still lies
within the specification after adding LETs to all functions. The main benefit for
suppliers is that they can focus on the functionality and develop in a platform-
independent way and therefore are released from the burden of testing the same
software repeatedly on different platforms.

Legacy systems can be integrated with TDL by so-called incremental scheduling. This
approach enables to import a legacy communication schedule and to extend it by
adding the communication frames required by the TDL system. It is also possible to
exchange values between the two domains by mapping legacy signals to sensors and
actuators of TDL modules. This integration allows OEMs and suppliers to phase-in the
TDL methodology without starting completely from scratch by replacing parts of an
existing system with TDL modules step-by-step.

7. Conclusion and Future Work

In the chapters above we demonstrated the feasibility of automatic code and
communication schedule generation for LET-based systems by using FlexRay systems
as examples. The proposed TDL runtime system and code and schedule generation
framework are a further contribution towards a comprehensive, flexible, and platform
independent modeling tool chain for time-triggered real-time systems. While even
the AUTOSAR methodology fails to fulfill its vision of proper platform abstraction, the
TDL tools deliver this vision. We outlined how employing the LET concept finally
enables the industry to move away from the traditional ECU-centric workflow to a
truly software component-centric workflow. In our view, the newly proposed
workflow would have a beneficial impact on the OEM-supplier relationship, leading to
increased efficacy, productivity and flexibility.

Future Work

While the thesis proves the feasibility of using TDL and the TDL tool chain for
industrial, distributed real-time systems, there are still numerous challenges to
further improve its functionality and the range of applications.

One such challenge is the integration of multiple timing domains or time sources.
Currently a TDL system is assumed to have a single clock shared by all modules in
the system and that they all start synchronously. All nodes in the system must be in
sync so that the LET start and end instances of tasks occur at the same time on each
node of the system. However, it is often not feasible to adhere to this strict
requirement. Clocks on a computing node are often an order of magnitude higher
that the clock on the bus connecting nodes and therefore are expensive to
synchronize. In larger systems there may be multiple time triggered busses which
cannot be synchronized to each other at all. And in motor control applications for
example, the software is often synchronized to the crank shaft of the engine and
therefore changes during operation. All these examples demonstrate the need to
relay the strict synchronization requirement. A solution might introduce groups of
TDL module or nodes which share a common clock and a way to integrate those
groups without losing all real-time guarantees and simulation accuracy.

Concerning the code and schedule generation framework and its frontend, the
TDL:VisualDistributor, a possible additional functionality is the automatic assignment
of a set of modules to a set of nodes. Apart from testing the schedulability of all
possible combinations, is also possible search for a mapping which optimizes for
minimal data transfer between nodes by placing modules which communicate
frequently and with large messages between each other on the same node. The fact
that some modules require sensors and actuator hardware which might not be
present on every node could be tackled by introducing constraints specifying which
hardware a module requires. The automatic mapping functionality could also be used

152 Conclusion and Future Work

to recommend an alternative mapping to a user in case a manual mapping turns out
to be unschedulable. Further possible improvements include support for systems with
multiple and heterogeneous communication networks, e.g. for combining FlexRay
with CAN and other busses as often done in automotive systems. These would
require generating gateway nodes translating between these networks automatically.

As multiprocessor and multicore systems become increasingly important also in real-
time systems, it is a logical step to support such systems by the TDL Runtime
System. A straight-forward approach would be to keep a single instance of the TDL
Machine and distribute the execution of task functionality code across all processors
or cores available. A multi-threaded version of the TDL Machine is also possible, but
depending on the concrete E Code there might not be many instructions that can be
executed in parallel. However, the parallel execution of complex sensor and actuator
code would help to keep the execution time of the TDL Machine as short as possible
as required by the assumption that this code is executed in logically zero time.

The dependability standards of embedded real-time applications often require fault
tolerance and therefore the redundancy of components. While TDL guarantees
predictable behavior of the modules on a computing node, it cannot prevent
hardware failures. As TDL modules are already used as units of distribution, they are
also a natural choice for the unit of replication. Major challenges however are the
management of multiple values of the public output ports of a module, the
reintegration of modules into a running system and the propagation of information
about redundant modules into the system. An example for the latter is the triggering
of a mode switch when specific modules or nodes are missing. The handling of only
partially complete TDL systems could also be used to support systems with unreliable
communication links, such as wireless sensor networks.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

Charette, R. N. This Car Runs on Code. 2009. IEEE Spectrum,
http://www.spectrum.ieee.org/feb09/7649.

Henzinger, T. A. and Sifakis, J. The Discipline of Embedded Systems Design.
2007. Computer, pp. 32-40.

Henzinger, T. A., Horowitz, B. and Kirsch, C. M. Giotto: A Time-triggered
Language for Embedded Programming. 2003. Proceedings of the IEEE 91, pp.
84-99.

Ghosal, A., et al. Event-driven Programming with Logical Execution Times.
2004. Hybrid Systems Computation and Control, Lecture Notes in Computer
Science 2993, Springer.

Ghosal, A., et al. A Hierarchical Coordination Language for Interacting Real-
Time Tasks. 2006. Proc. ACM International Conference on Embedded Software
(EMSOFT).

Project, MoDECS. Model-Based development of Distributed Embedded Control
Systems. 2003-2005. http://modecs.cc.

Farcas, C. Towards Portable Real-Time Software Components. 2006. PhD
Thesis, Department of Computer Science, University of Salzburg.

Farcas, E. Scheduling Multi-Mode Real-Time Distributed Components. 2006.
PhD Thesis, Department of Computer Science, University of Salzburg.

NXP Semiconductors. NXP drives active safety with world’s first FlexRay
transceiver. 2006. Press Release, http://www.nxp.com/news/content/
file_1279.html.

[10] Elekrobit. £EB Designer Pro. http://www.elektrobit.com.

[11] AUTOSAR. AUTOSAR standard. http://www.autosar.org.

[12] Kopetz, H. Real-Time Systems - Design Principles for Distributed Embedded

Applications. 2007. Springer. ISBN 0792398947.

[13] Naderlinger, A. Modeling of Real-Time Software Systems based on Logical

Execution Time. 2009. Dissertation, University of Salzburg.

[14] Templ, 3. Timing Definition Language (TDL) Specification 1.5. Salzburg :

University of Salzburg, 2008. Technical Report.

[15] Farcas, E., et al. Transparent Distribution of Real-Time Components Based on

Logical Execution Time. 2005. Proceedings of the 2005 ACM SIGPLAN/SIGBED

154 References

conference on Languages, compilers, and tools for embedded systems (LCTES).
[16] The Mathworks. MATLAB/Simulink. http://www.mathworks.com.

[17] Halbwachs, N., et al. The synchronous data-flow programming language
LUSTRE. 1991. Proceedings of the IEEE, 79(9):1305-1320.

[18] Berry, G. and Gonthier, G. The ESTEREL synchronous programming language,
design, semantics, implementation. 1992. Science Of Computer Programming,
19(2):87-152.

[19] Benveniste, A. and G., Berry. The Synchronous Approach to Reactive and
Real-Time Systems. 1991. pp. 1270-1282, Proceedings of the IEEE.

[20] Kirsch, C. M. Principles of Real-Time Programming. 2002. pp. 61-75,
Proceedings of the 2nd international Workshop on Embedded Software
(EMSOFT), LNCS 2491.

[21] Liu, J. and Lee, E. A. Timed Multitasking for Real-Time Embedded Software.
2003. IEEE Control Systems Magazine: Advances in Software Enabled Control,
pp. 65-75.

[22] Angelov, C. and Berthing, J. Distributed Timed Multitasking - A Model of
Computation for Hard Real-Time Distributed Systems. From Model-Driven
Design to Resource Management for Distributed Embedded Systems. 2006, pp.
145-154.

[23] Hoare, C. A. R. Monitors: An Operating System Structuring Concept. 1974.
Communications of the ACM Vol. 17 (10), pp. 549-557.

[24] Dijkstra, E. W. Cooperating sequential processes. 1968. In Programming
Languages, Academic Press, New York.

[25] Herlihy, M. P. A Methodology For Implementing Highly Concurrent Data
Structures. 1990. Proceedings of the Second ACM Symposium on Principles and
Practice of Parallel Programming, ACM, New York.

[26] Greenwald, M. B. Non-Blocking Synchronization and System Design. 1999.
PhD Thesis, CS-TR-99-1624, Stanford University.

[27] Templ, J., Pletzer, J. and Pree, W. Lock-Free Synchronization of Data Flow
Between Time-Triggered and Event-Triggered Activities in a Dependable Real-
Time System. 2009. Proceedings of the 2nd International Conference on
Dependability (DEPEND 2009), Athens, Greece.

[28] Henzinger, T. A., et al. Time-safety checking for embedded programs. 2002.
Embedded Software. Lecture Notes in Computer Science 2491. Springer.

[29] Yodaiken, V. and Barabanov, M. A Real-Time Linux. 1997. Proceedings of the
Linux Applications Development and Deployment Conference (USELINUX),
Anaheim, CA.

[30] Kopetz, H. and Reisinger, 1. The Non-Blocking Write Protocol NBW: A
Solution to a Real-Time Synchronization Problem. 1993. Proceedings of the 14th
IEEE Symposium on Real-Time Systems, 131-137, IEEE, New York.

[31] Pletzer, J., Templ, J. and Pree, W. A Code Generation Framework for Time-
Triggered Real-Time Systems. 2009. Int. Symposium on Software/Hardware
Optimizations for Embedded Systems (SHOESQ9) in conjunction with 2009 IEEE

References 155

Int. Conference on Embedded Software & Systems (ICESS), Hangzhou,
P.R.China.

[32] Henzinger, T. A., Kirsch, C. M. and Matic, S. Composable Code Generation
for Distributed Giotto. 2005. Proc. of the ACM SIGPLAN/SIGBED conference on
Languages, compilers, and tools for embedded systems (LCTES).

[33] OSEK Group. OSEK/VDX Operating System Specification. 2005. Version 2.2.3,
available from http://www.osek-vdx.org.

[34] Makowitz, R. and Temple, C. FlexRay - A Communication Network for
Automotive Control Systems. 2006. Proceedings of 2006 IEEE International
Workshop on Factory Communication Systems, pp. 207-212.

[35] Farcas, E. and Pree, W. Hyperperiod Bus Scheduling and Optimizations for
TDL Components. 2007. Proceedings of the 12th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), Patras, Greece.

[36] Farcas, E., Pree, W and Templ, 1. Bus Scheduling for TDL Components. 2006.
Dagstuhl Conference on Architecting Systems with Trustworthy Components.

[37] Nakano, R and Yamada, T. Conventional genetic algorithm for job shop
problems. 1991. pp. 474-479, Proc. of the 4th International Conference on
Genetic Algorithms.

[38] Ding, S., et al. A GA-based scheduling method for FlexRay systems. 2005.
Proceedings of the 5th ACM International Conference on Embedded Software.

[39] Flexray Consortium. FlexRay Communications System Protocol Specification
Version 2.1 Revision A. 2005.

[40] Pletzer, J. and Pree, W. Impact of Platform Abstractions on the Development
Workflow. 2009. Symposium on Automotive/Avionics Systems Engineering
(SAASE), San Diego, CA, USA.

[41] Kindel, O. and Friedrich, M. Softwareentwicklung mit AUTOSAR. s.l. :
dpunkt.verlag GmbH, 2009. ISBN 978-3-89864-563-8.

[42] Weber, 3. Automotive Development Processes. s.l. : Springer, 2009. ISBN 978-
3-642-01252-5.

[43] Vector Informatik. DaVinci Tool Suite. http://www.vector-worldwide.com.

[44] The TIMMO Consortium. TIMMO Timing Model, Methodology Version 2. 2009.
TIMMO Deliverable D7.

[45] TTA Group. TTEthernet Specification. http://www.ttagroup.org/ttethernet/
overview.htm.

