

Mapping of Timing Definition Language (TDL)

Components to Distributed Platforms

Johannes Pletzer

Department of Computer Sciences

University of Salzburg

Advisor: Prof. Dr. Wolfgang Pree

A dissertation submitted for the degree of

Doctor technicae (Dr. techn.)

Salzburg, Juli 2012

Abstract

This dissertation deals with the mapping of real-time system components specified

using the Timing Definition Language (TDL) to distributed embedded platforms. TDL

enables the specification of the timing behavior of such components independently of

their functionality and thereby abstracts from the hardware platforms on which they

are eventually executed on. The main contributions are (1) a runtime system suitable

for the distributed execution of TDL components and (2) a code and schedule

generation framework whose aim is to provide fully automatic deployment of

components to any hardware platform using customizable plug-ins. Both the runtime

system and the code generation framework support recent extensions to TDL such as

the ability to specify asynchronous activities. We provide framework plug-ins for a

heterogeneous distributed system using the FlexRay communication protocol to

demonstrate the applicability of our work. A comparison of the TDL tool chain to the

workflow and tools currently employed in the automotive industry rounds out the

thesis.

Acknowledgements

First of all I thank my advisor Prof. Wolfgang Pree for giving me the opportunity to

be part of his excellent research group and to write this thesis. Your positive energy

and bold visions always inspired and encouraged me!

I also thank my co-advisor Dr. Josef Templ for countless software design discussions

and pair-programming sessions. You formed the basis of my software engineering

skills!

Furthermore, my gratitude goes to Claudiu Farcas and Prof. Ingolf Krueger from UC

San Diego for reviewing the thesis. Your perspective helped me to advance my work!

Many thanks also go to my colleagues at the Department of Computer Sciences,

especially Andreas Naderlinger, Peter Hintenaus, Emilia Farcas, Gerald Stieglbauer,

Patricia Derler and Stefan Resmerita, for all those discussions about TDL and other

topics. Without your input I never would have come this far!

Adriana Pratter was a great help for all administrative stuff. Thanks for your cheerful

words when progress was not as fast as expected!

A lot of thanks go to my family and friends for both distracting me from the thesis

and also for reminding me that it is a good thing to continue working on it. Thank

you all for being there no matter what!

The longest lasting support of all was provided by my parents Annemarie and Johann

Pletzer. Thank you for always believing in me without a doubt!

My deepest gratitude goes to my love Gloria Dürnberger for always supporting me,

despite the fact that the thesis consumed a lot of time we otherwise could have

spent together. Thank you for encouraging me until the very end!

Finally, special thanks go to our cat Beijing. You showed me how to relax and how to

enjoy the simple things in life!

Table of Contents

Abstract .. 3

Acknowledgements ... 5

Table of Contents .. 7

List of Figures ... 11

1. Introduction .. 13

1.1. Motivation and Context.. 13

1.2. Objectives and Contributions .. 14

1.3. Structure of the Dissertation .. 16

2. Timing Definition Language (TDL) .. 17

2.1. The Logical Execution Time (LET) Abstraction ... 17

2.2. TDL Language Constructs .. 18

2.3. Transparent Distribution .. 22

2.4. Execution of TDL Programs .. 23

2.5. Extensions for Asynchronous Activities .. 26

2.6. Visual TDL Tools ... 28

2.7. TDL Tool Chain ... 30

2.8. Related Work ... 33

3. TDL Runtime System ... 37

3.1. TDL Machine .. 41

3.1.1. Initialization ... 42

3.1.2. Step Function ... 43

3.1.3. Non-Preemptive Dispatcher .. 44

3.2. Synchronization Mechanism for Asynchronous Activities 45

3.2.1. Asynchronous Activities ... 45

3.2.2. Threading and Synchronization ... 47

3.2.3. Quantitative Analysis of Runtime Behavior ... 53

3.2.4. Related Work .. 53

3.3. TDL Comm Layer Framework ... 54

3.3.1. Initialization ... 57

3.3.2. Frame Handling .. 58

3.3.3. Communication between Asynchronous Activities 59

3.3.4. Platform-Specific Plug-Ins .. 60

4. Code and Schedule Generation Framework ... 63

4.1. Framework Foundations ... 66

4.2. Node-Level Code Generation .. 74

4.2.1. C Platform Plug-In ... 77

4.2.2. Embedded C Platform Plug-In ... 81

4.2.3. Stub Module Generation ... 83

4.2.4. Communication Layer .. 85

4.3. Cluster-Level Code Generation.. 89

4.3.1. Comm Scheduler ... 91

4.3.2. Iterative Frame Generator .. 97

4.3.3. Genetic Frame Generator ... 99

4.3.4. Comm Scheduler Plug-In .. 101

5. Platform-Specific Adaptations for FlexRay .. 105

5.1. The FlexRay Protocol ... 105

5.2. Hardware Platforms ... 107

5.2.1. Node Renesas ... 107

5.2.2. MicroAutoBox .. 108

5.3. TDL Comm Layer Framework Plug-Ins ... 110

5.4. TDL:VisualDistributor Interfaces ... 111

5.5. Node Platform Plug-Ins .. 114

5.5.1. Node Renesas Platform .. 114

5.5.2. MicroAutoBox Platform ... 117

5.6. FlexRay Implementation .. 122

5.6.1. FlexRay Communication Layer .. 123

5.6.2. Node Renesas Communication Layer .. 128

5.6.3. MicroAutoBox Communication Layer .. 129

5.6.4. Cluster Platform Plug-In ... 130

5.7. Case Study .. 137

6. TDL Workflow .. 141

6.1. Introduction ... 141

6.2. AUTOSAR ... 142

6.3. Current Workflow and Tools in the Automotive Industry 144

6.3.1. EB Designer Pro .. 144

6.3.2. DaVinci Tool Suite ... 146

6.3.3. Evaluation .. 147

6.4. The TDL Approach and its Impact on the Workflow 148

6.4.1. TDL Tools ... 148

6.4.2. Evaluation .. 149

6.4.3. Workflow Advantages .. 149

6.4.4. Transition from Today's Workflow.. 150

7. Conclusion and Future Work ... 151

References .. 153

List of Figures

Figure 1. Logical Execution Time (LET) ... 18

Figure 2. Timing and data flow of the producer-consumer example 18

Figure 3. Slot selection ... 21

Figure 4. Physical timing and communication window ... 22

Figure 5. Integration of asynchronous activities ... 26

Figure 6. TDL:VisualCreator user interface .. 29

Figure 7. TDL:VisualDistributor user interface .. 30

Figure 8. TDL tool chain overview .. 31

Figure 9. TDL system layers .. 37

Figure 10. TDL Runtime System include relationships ... 38

Figure 11. Assumed task model ... 46

Figure 12. Threads and critical regions.. 48

Figure 13. Stub module data flow ... 55

Figure 14. Transmission of a port value via the network 56

Figure 15. TDL Comm Layer frame buffers .. 57

Figure 16. Framework collaboration diagram ... 64

Figure 17. Framework foundation classes and interfaces 66

Figure 18. Interface Platform ... 67

Figure 19. Class ModuleDecl representing the Abstract Syntax Tree (AST) 68

Figure 20. Abstract class AbstractPlatform... 69

Figure 21. Interface NodePlatform .. 69

Figure 22. Abstract class AbstractNodePlatform ... 71

Figure 23. Interface ClusterPlatform ... 72

Figure 24. Class CommSchedule .. 73

Figure 25. Node platform abstraction levels ... 75

Figure 26. Communication layer class diagram .. 85

Figure 27. Detailed framework collaboration diagram ... 90

Figure 28. Class CommScheduler ... 91

Figure 29. Sample binding of several messages to the same frame 95

Figure 30. Sample mapping of frame windows to frames 96

file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416902
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416903
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416904
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416905
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416906
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416907
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416908
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416909
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416910
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416911
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416912
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416913
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416914
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416915
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416916
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416917
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416918
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416919
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416920
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416921
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416922
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416923
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416924
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416925
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416926
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416927
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416928
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416929
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416930
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416931

Figure 31. Interface CommSchedulerPlugin ... 101

Figure 32. FlexRay cycle layout .. 106

Figure 33. Node Renesas hardware overview ... 107

Figure 34. dSPACE MicroAutoBox ... 109

Figure 35. TDL:VisualDistributor property page example 111

Figure 36. TDL:VisualDistributor data model classes ... 112

Figure 37. TDL:VisualDistributor interfaces .. 113

Figure 38. Prototyping hardware node platforms .. 113

Figure 39. Node Renesas node property page .. 115

Figure 40. Node Renesas platform output device mapping dialog........................ 115

Figure 41. TDL:VisualDistributor interrupt assignment 118

Figure 42. MicroAutoBox platform input device mapping dialog 119

Figure 43. FlexRay-related classes .. 123

Figure 44. Node Renesas communication layer class diagram 128

Figure 45. FlexrayPlatform class diagram .. 131

Figure 46. FlexRay Property Editor ... 134

Figure 47. FlexRay cluster property page .. 134

Figure 48. Legacy case study data flow ... 137

Figure 49. Mapping of a TDL sensor to a FlexRay signal 138

Figure 50. Case study oscilloscope plot ... 138

Figure 51. Automatic platform deployment .. 142

Figure 52. EB Designer Pro Main User Interface ... 144

Figure 53. EB Designer Pro workflow overview (white: OEM, gray: supplier) 145

Figure 54. DaVinci Tools workflow overview (white: OEM, gray: supplier) 146

Figure 55. DaVinci System Architect user interface ... 147

Figure 56. TDL tools workflow overview (white: OEM, gray: supplier) 149

file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416932
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416933
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416935
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416936
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416937
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416938
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416939
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416940
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416941
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416942
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416943
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416944
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416945
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416946
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416947
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416948
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416949
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416950
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416951
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416952
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416954
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416955
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416956
file:///C:/Work/Documents/Diss/Diss.docx%23_Toc330416957

1. Introduction

This chapter gives an overview of the motivation and main objectives of the thesis

and summarizes its main contributions.

1.1. Motivation and Context

Today, embedded systems and their software are ubiquitous in modern life, with

examples ranging from consumer electronics to medical and transportation systems.

An impressive example of their growing importance is their application in the

automotive and avionics industry. For example, a premium-class car today is

contains millions of lines of code scattered across 70 to 100 networked electronic

control units (ECUs) [1]. Software complexity escalates to the point that current

development processes and tools can no longer ensure sufficiently reliable systems

at affordable cost [2], also leading to a steadily rising cost of software-related

warranty cases. This explains the increasing demand for improved software

engineering, capable of handling the development and maintenance requirements

faced by the industry. The growing complexity of today's embedded systems,

together with the dropping cost of silicon, paves the way for the introduction of new

abstractions in the field of embedded software engineering.

Traditionally, embedded software construction is platform dependent and not

compositional, especially when it comes to its timing properties. This leads to

increased efforts required for integration, validation and maintenance. The timing

behavior is typically not specified explicitly but rather is a result of system load and

the occurrence of sometimes unpredictable events at runtime and so developers

often rely on intensive testing, although that can never proof that their design works

as required under all circumstances. The concept of the Logical Execution Time (LET)

introduced in the realm of the Giotto project [3] aims to overcome this shortcoming

by abstracting from the physical execution time of tasks and, in the distributed case,

from network communication. The LET abstraction specifies that the inputs of a task,

which can be values obtained from sensors or from other tasks in the system, are

read at the beginning of the LET period and the outputs provided to other tasks or

actuators are only updated at the end of a task's LET. The LET programming

paradigm enables the platform independent description of the timing behavior, which

is guaranteed to be equal on any hardware platform, provided that it is fast enough.

Thus, the LET abstraction leads to a significant reduction of complexity as it allows

embedded software developers to focus on the functionality of a software component

without having the target platform in mind.

Apart from Giotto, there are some other research projects which base on the

promising LET concept. xGiotto [4] is one successor of Giotto which has events as its

main structuring principle. It allows the definition of LETs for synchronous and

asynchronous tasks and guarantees time-safety mainly by constraining the

14 Introduction

occurrence rate of events and therefore bounding the time it takes until an event is

processed. The Hierarchical Timing Language (HTL) [5] enables the hierarchical

refinement of so-called abstract task invocations for the purpose of compact

representation and simplified program analysis and schedulability tests.

The Timing Definition Language (TDL) also facilitates the LET abstraction and aims at

supporting the development of deterministic, portable software for embedded real-

time systems. It goes beyond Giotto in a number of aspects, most notably by the

introduction of a component model and the integration of asynchronous activities.

While Giotto is basically an abstract mathematical model of a time-triggered

language with a rather simple tool chain that primarily proofs that it can be

implemented, the TDL project aims at providing a comprehensive tool chain that

makes Giotto's concepts available for real-world industrial projects. This is something

which also xGiotto and HTL fail to provide, but is a necessity in order to eventually

tackle the aforementioned challenges the industry is facing today.

1.2. Objectives and Contributions

The development of TDL started in 2003 in the context of the MoDECS (Model-Based

Development of Distributed Embedded Control Systems) project [6]. Our work

primarily bases on [7], which laid the foundation for a portable TDL runtime system,

and [8], which proposed the transparent distribution of TDL modules. Recently, the

TDL language has been extended by a number of essential features, above all the

combination of the time-triggered and event-triggered paradigms by adding support

for asynchronous activities. It allows specifying event-triggered (alias asynchronous)

activities, which are triggered by the occurrence of an external hardware interrupt or

other events, and which many real-time systems execute in addition to strictly time-

triggered (alias synchronous) activities. Integrating asynchronous activities and other

additional features require adaptations along the complete TDL tool chain, affecting

the compiler, the runtime system, and code and schedule generation for nodes and

communication networks. The extensions were driven by the vision of the application

of TDL in industrial environments, and consequently we incorporated many hints

from our industry partners which features they need and what would ease the

integration of TDL in their existing development workflow. This not only led to

numerous language adaptations and platform implementations, but also to

extensions that require thorough theoretical research.

The following motivates and summarizes all major thesis contributions, which all are

related to specific advancements of the TDL language and tools in recent years.

Code & Schedule Generation Framework

Software modules developed with TDL are envisioned to be deployed on a broad

range of different hardware platforms, including diverse communication protocols

and operating systems. For that purpose, it was required to come up with a generic

code generation framework.

One of the major contributions of this thesis is a flexible, LET-based code generation

framework for potentially distributed real-time systems. A distributed system is as

system consisting of multiple, interconnected computing nodes. The framework

covers both code generation on node level as well as the generation of a

communication schedule for the communication bus connecting such nodes. For that

purpose task and communication schedules must be generated. Those schedules

influence each other and consequently our framework deals with their

interdependence by pioneering an iterative scheduling approach. The framework is

extensible by the use of plug-ins, which implement support for specific node

Introduction 15

platforms and communication protocols and therefore guarantee a clear separation of

platform independent from platform dependent concerns. We present the plug-in

interfaces and describe sample plug-ins. We also show that the proposed framework

is not limited to TDL but can be applied to other languages that use the LET

abstraction and that it is substantially more general and powerful than the

methodology and tools presented in [8]. We provide empirical comparisons of

various scheduling approaches and also investigate the use of genetic algorithms for

this specific scheduling problem.

TDL Runtime System Advancement

Based on the work of Farcas [7], we redesigned the TDL runtime system so that it

supports all recent TDL extensions such as cyclically imported modules, structured

data types and global output ports. A special focus is on developing a communication

layer with a well-defined interface in order to support specific communication

protocols and a corresponding implementation compatible with the FlexRay protocol.

The most significant advancement of the TDL Runtime System is the integration of

asynchronous activities. While synchronous activities are coordinated by the so-

called TDL Machine, asynchronous activities are not as time critical and therefore are

executed in the background so that they do not affect the timing behavior of

synchronous activities. However, it is allowed that synchronous and asynchronous

activities exchange data in a properly synchronized way. We describe the TDL

language extensions and put special focus on the threading model and

synchronization algorithm handling the data flow between the synchronous TDL

Machine and asynchronous activities. We implemented the TDL Runtime System

support by means of platform plug-ins for a number of target platforms, including

distributed systems.

FlexRay Support

Another main objective of the thesis is to prove the applicability of TDL in real-world

control applications. The FlexRay protocol is a state-of-the art communication

protocol targeted at automotive applications and significantly gained importance,

which eventually led to its adoption in automotive series production since 2006 [9].

While previous TDL prototype implementations supporting distribution used the CAN

protocol, we then chose to apply TDL to the FlexRay communication bus and

corresponding prototyping hardware commonly used in the industry, such as the

MicroAutoBox from dSPACE and the NODE<RENESAS> by DECOMSYS (now

Elektrobit). The FlexRay protocol is especially suitable for TDL as it has a static, time-

triggered part, which we use for communicating synchronous TDL activities, and a

dynamic, event-triggered part, which fits well for handling asynchronous TDL

activities. We implemented FlexRay support by means of a code generation

framework plug-in which calculates all required cluster and node parameters and

ensures that the FlexRay cluster startup is performed correctly. In addition, we

provide the ability for what we call incremental scheduling, i.e. the augmentation of

an existing FlexRay schedule of a legacy system. This enables to share the bus

between legacy devices and nodes running TDL while also allowing their interaction

via the exchange of messages.

TDL Workflow Analysis

TDL has a significant impact on the development process. In an effort to

demonstrate the differences between the TDL approach and the conventional way

embedded software is designed, we compare the workflow when using the TDL

language and tools with two state-of-the-art commercial tools for the design of

16 Introduction

distributed embedded systems. For this comparison, we focus on the automotive

industry and compare TDL to Elektrobit's DESIGNER PRO [10] and Vector's DaVinci

Tools based on the AUTOSAR standard [11].

Furthermore, we analyze the current development workflow in the automotive

industry, which mainly is characterized by the relationship between the original

equipment manufacturer (OEM) and its suppliers. We question if and how it is

possible to fit TDL in this workflow and evaluate possible ways to integrate it. We

also describe what can be done in order to ease the paradigm shift, as for example

the application of incremental scheduling which enables the combination of TDL with

legacy systems and therefore allows for a smooth transition between the different

development approaches.

1.3. Structure of the Dissertation

The thesis is divided into the following chapters: Chapter 2 introduces the Timing

Definition Language (TDL) by describing its syntax, semantics, recent extensions,

graphical front-ends, and tool chain. Chapter 3 details a generic TDL Runtime System

for potentially distributed systems programmed in C. The static runtime system

requires code which must be dynamically generated, for which the code and schedule

generation framework described in chapter 4 is used. Chapter 5 presents plug-ins for

this framework for a number of supported target platforms using the FlexRay

communication protocol and demonstrates the usage of the framework and plug-ins

by means of concrete examples. Chapter 6 takes an in-depth look at the

development workflow TDL introduces and compares it to the one currently

employed in the automotive industry. The thesis concludes with an outlook on future

work in chapter 7.

2. Timing Definition Language (TDL)

The Timing Definition Language (TDL) is a high-level textual notation which allows

the explicit specification of the timing aspects of a real-time system. Such a system

typically performs periodic activities which consist of three phases, namely the

reading of sensors, followed by a computation tasks and finally the setting of

actuators [12]. In contrast to the traditional real-time system engineering approach,

where the timing properties are typically a result of platform-dependent or non-

deterministic factors such as the CPU clock speed and the occurrence of interrupts, in

TDL the timing of tasks is exactly specified and is preserved on every hardware

platform. Therefore, TDL allows developing and testing a software component only

once and then deploying it to any supported and powerful enough hardware

platform. This leads to significant advantages in system development, especially

concerning testing, simulation, deployment and maintenance.

In 2001, the Giotto project at the University of California in Berkeley laid the

scientific foundation for TDL by introducing a new programming abstraction called

the Logical Execution Time (LET) [3], which decouples the logical timing of

computation tasks from their physical execution. The development of TDL started in

2003 in the context of the MoDECS (Model-Based development of Distributed

Embedded Control Systems) project at the University of Salzburg. Based on the

project's results a spin-off company named preeTEC was founded in 2005 with the

goal to make the TDL language available to real-world industry applications. In

collaboration with partners from the industry, the development of the TDL language

and tools and continued in a sequence of steps until now, whereas a significant

milestone was marked by the integration of asynchronous activities in 2008.

In this chapter we present the LET concept and the constructs and syntax of the TDL

language, including numerous extensions that have been added recently.

Furthermore, we will present an overview of the tool chain enabling the application of

TDL to real-world systems.

2.1. The Logical Execution Time (LET) Abstraction

The TDL language is based on the concept of Logical Execution Time (LET), which

was introduced in the realm of Giotto [3]. It aims to resolve typical shortcomings of

embedded software construction, such as platform dependency and lack of

compositionality. These are caused primarily by the fact that timing behavior is not

specified explicitly but rather is a result of system load and the occurrence of

unpredictable events at runtime. The LET abstraction offers a solution by abstracting

from the physical execution time of tasks and, in the distributed case, from network

communication. It does so by specifying that the inputs of a task, which can be

values read from sensors or outputs of other tasks, are read at the beginning of the

18 Timing Definition Language (TDL)

LET period and the outputs provided to other tasks or actuators are only updated at

the end of a task's LET. As shown in Figure 1, we call the beginning of the LET the

release event and its end the terminate event. Between these, the outputs have the

value of the previous execution. It is always defined which value is in use at which

time instant and there are no race conditions or priority inversions involved. LET

provides the cornerstone to deterministic behavior, well-defined interaction

semantics between parallel activities and platform abstraction. As long as physical

task execution at runtime and potential network communication take place within the

LET of a task, the software will exhibit exactly the same observable behavior on any

platform - no matter if it is fast, slow or even distributed.

In TDL, tasks interface with other tasks and sensors and actuators solely via so-

called ports. Arranging the data flow by copying from one port to another, e.g.

reading input ports and writing output ports, is considered a Logical Zero Time (LZT)

operation. On the other side, the execution of the task's body is considered to be a

long running operation that cannot simply be ignored.

2.2. TDL Language Constructs

TDL provides language constructs for the specification of systems based on the LET

abstraction. This section introduces those constructs by means of a simple producer-

consumer example. Figure 2 illustrates the data flow between two LET-based

components called Sender and Receiver. Sender contains a task produce with a LET

of 5 ms and Receiver runs a task consume with a LET of 10 ms. In this example,

consume receives the output value of produce. The vertical arrows in the figure

Figure 1. Logical Execution Time (LET)

Figure 2. Timing and data flow of the producer-consumer example

t Sender Sender produce produce

Receiver Receiver consume

produce produce

LET 10 ms

LET 5 ms

communication of produce’s

output to consume

consume

Timing Definition Language (TDL) 19

indicate when the results of produce are communicated to consume, which is exactly

at the terminate event at the end of produce's LET. The value is then available for

consume at its release event at the start of its next LET period.

In the following, we present the TDL code of the Sender module step-by-step:

module Sender {

A TDL module represents a component of the system. Modules are the top-level

structuring concept of TDL and serves multiple purposes: (1) a module is a named

program unit and allows the decomposition of large systems by providing a name

space and an export/import mechanism, (2) modules enable the parallel composition

of a system as the timing behavior of a module is not affected by other modules, (3)

modules serve as units of loading, i.e. a runtime system may support dynamic

loading and unloading of modules, and (4) modules serve as unit of distribution

because data flow within a module (cohesion) will typically be much larger than data

flow across module boundaries (adhesion). All modules of a system are logically

executed in sync and the data flow semantics is defined according to the LET

abstraction.

In the TDL language a module is specified by the module keyword followed by its

name and an enclosing curly bracket containing all constructs of the module, as can

be seen in the two example modules Sender and Receiver above.

 sensor boolean switch uses getSwitch;

 actuator int display uses setDisplay;

The first constructs in the Sender module are sensor and actuator definitions. They

are defined by a data type (in this example boolean and int), an identifier, and the

name of a functionality code function followed by the uses keyword. This function

contains the code which actually implements the reading of a sensor (getter function)

and the setting of an actuator (setter function).

 public task produce {

 output int o := 10;

 uses produceImpl(o);

 }

TDL tasks are declared by specifying a task's inputs, outputs and implementation

function which is again indicated by the uses keyword. The output port o of task

produce is initialized with a value of 10. Note that a task declaration contains no

information on the LET and timing of the task or if it is even executed at all.

 start mode main [period=10ms] {

 task

 [freq=2] produce(); // LET = 10ms/2 = 5ms

 actuator

 [freq=1] display := produce.o; // updated every 10ms

 mode

 [freq=1] if exitMain(switch) then freeze;

 }

 mode freeze [period=10ms] {}

}

The timing of tasks is defined by so-called task invocations, which are one of the

activities specified in a TDL mode. TDL supports multiple modes of operation for

20 Timing Definition Language (TDL)

every module where only one mode of a module can be active at a time. A mode

specifies the exact timing of mode activities which are (1) task invocations, (2)

actuator updates, and (3) mode switches. The Sender module has two modes: A

normal mode of operation called main and a dead end mode called freeze. The

conditions and time instants for mode switches are specified in the mode section of a

mode. Note that freeze has no mode section and therefore it is not possible to leave

this mode, meaning that after switching to it the module is effectively halted

indefinitely. Every mode has a period after which its timing pattern repeats itself for

as long as the mode is active. The frequency of an activity inside a mode is indicated

by the freq attribute followed by an integer value which specifies how many times

the activity is carried out per mode period. As for example the frequency of task

produce is 2, its LET is 10 ms divided by 2 and therefore 5 ms. Note that the

actuator display is only updated every 10 ms in this example.

module Receiver {

 import Sender;

 actuator int display uses setDisplay;

 task consume {

 input int i;

 output int o;

 uses consumeImpl(i, o);

 }

 mode main [period=10ms] {

 task

 [freq=1] consume(Sender.produce.o);

 actuator

 [freq=1] display := consume.o;

 }

}

The module Receiver makes the Sender module accessible by use of an

import/export mechanism which is comparable to general purpose programming

languages such as Java or C#. By specifying the name of a module after the import

keyword, all constructs declared as public in the given module (e.g. the task

produce in the Sender module) are accessible by the importing module. Also cyclic

import relationships are allowed. Constructs of imported modules are referenced by

using a dot notation. An example would be the use of Sender.produce.o as

argument for the task consume in the mode declaration of the Receiver module.

Further language constructs

The example above only uses a basic subset of all the available language and syntax

features of TDL. In the following, we present a number of additional language

constructs by means of modifications to the demo application above. Detailed

discussion of those constructs can be found in [13] and a complete feature list and

EBNF grammar of the language in the TDL Language Report [14].

Global output ports. In addition to ports assigned to specific tasks, it is also

possible to define global output ports. Such ports can be written to by different tasks,

but only by one task per mode. The following is an adapted version of parts of the

Timing Definition Language (TDL) 21

Sender module above, using the global output port globalO instead of the task

output port o:

public output int globalO := 10;

public task produce {

 uses produceImpl(globalO);

}

start mode main [period=10ms] {

 task

 [freq=2] produce(); // LET = 10ms/2 = 5ms

 actuator

 [freq=1] display := globalO; // updated every 10ms

 [...]

}

Slot selection. By default, the period of a mode and the frequency of a task

invocation define consecutive invocations whose LETs equal to the mode period

divided by the frequency. TDL slot selection allows a more fine-grained specification

of the timing task invocations. We call the intervals resulting from the division of the

mode period by the frequency slots. Slot selection allows the programmer to specify

which slots to use for the LET of a task invocation. Figure 3 illustrates the resulting

slots for three different combinations of frequency and slot annotations. Note that

slots=1* also is the default if the slot annotation is omitted, meaning that every slot

is used as LET for an invocation of the task specified. In the following example code

the mode period of 10 ms is divided into 4 slots with length 2.5 ms each by the

setting a frequency of 4. The slot annotation slots=1-2|4 results in a task

invocation LET of 5 ms at the beginning of the mode period and another invocation

with LET 2.5 ms from 7.5 ms to 10 ms at the end of the mode period.

 start mode main [period=10ms] {

 task

 [freq=4, slots=1-2|4] produce();

 [...]

 }

Task splitting. Typically, a TDL task is associated with a single external function

that represents the task's body. However, for some applications it is beneficial to

split up this function into two parts, a method which we call task splitting. These two

parts consist of one simple function (fast step) which is executed in Logical Zero

Time (LZT) when the task is released, i.e. at the task's LET start, and another long

running function (slow step) which is executed within the LET of the task. The latter

may update the task's internal state by some advance calculations such that the next

t

Mode period = 10 ms

freq=1, slots=1*

freq=4, slots=1*

freq=4, slots=1-2|4

10 ms slot

2.5 ms slot

5 ms slot

2.5 ms slot 2.5 ms slot 2.5 ms slot

2.5 ms slot

Figure 3. Slot selection

22 Timing Definition Language (TDL)

call of the LZT function can be done fast. This can be utilized e.g. for digital

controllers which need to evaluate a polynomial as the core of their implementation.

The following code shows task splitting applied to the produce task of the Sender

module above:

 public task produce {

 output int o := 10;

 uses [release] produceImplFast(o);

 uses produceImplSlow(o);

 }

Task sequences. So-called task sequences allow setting actuators immediately after

a task invocation. Such a sequence consists of a task invocation followed by a set of

actuator updates. When combined with task splitting, this can be used to update

actuators right after the fast task part at the LET start. This feature can be helpful in

digital controller applications, where as a rule of thumb the reaction time of a

controller should be below 10% of the sample time in order to achieve stable

controller behavior. The syntax for using a task sequence is to enclose the task

invocation and the actuator updates in curly brackets, as the following example code

shows:

start mode main [period=10ms] {

 task

 [freq=2] {produce(); display := produce.o;}

 [...]

}

2.3. Transparent Distribution

As briefly mentioned above, the behavior of TDL modules is also preserved when

they are distributed across multiple nodes of a distributed system. This is done by

accounting for the time it takes to communicate values via a network inside the LET

of the task which produces them. In order to illustrate this, let us look at the

producer-consumer example as described above. Figure 2 shows a logical view of our

example system as it does not contain any information on how the two components

are deployed on a platform. In contrast, Figure 4 also indicates the physical timing,

Figure 4. Physical timing and communication window

t Sender Sender produce produce

Receiver Receiver consume

produce produce

LET 10 ms

LET 5 ms

consume

Node1

Node2

communication

window
communication

window

local
buffer

local
buffer

communication
bus

Timing Definition Language (TDL) 23

assuming that the Sender and Receiver modules are executed on a distributed

system. The Sender module is deployed on node Node1 and Receiver on Node2,

which are connected to each other via a communication bus. The black blocks

indicate the physical execution time of the tasks on a node's CPU. In such a setup

the output of produce must be transferred via the bus. The communication window

for doing so spans from the end of produce's physical execution time to the

terminate event at the end of its LET. As long as the network communication takes

place within this window, this distributed system shows exactly the behavior

specified by the LET semantics.

Handling network communication inside the LET leads to the notion of transparent

distribution [15], as the fact that a system is distributed does not change its

observable behavior in comparison to execution on a single node. What might differ

is only the physical behavior at runtime, in particular the order and length of task

executions and the time when messages are communicated. From the perspective of

the developer of a LET component, this means the possibility to focus on the

functionality without having the target platform in mind, i.e. without caring whether

components will eventually executed on the same node or not. Furthermore, the LET

concept lays the basis for automatic communication schedule generation, as the size

and timing of network frames can be determined automatically by analyzing the

communication requirements between LET components.

2.4. Execution of TDL Programs

This section explains how the timing specified in TDL modules is realized on a target

platform. For that purpose, a compiler (called the TDL compiler) transforms a TDL

program, i.e. a timing definition, into instructions of a virtual machine (called

Embedded Code or E-Code) which are executed by an appropriate runtime system

(called TDL Machine). On the target platform, the TDL Machine is activated

periodically and orchestrates the timing and data flow of TDL modules by interpreting

their E-Code. Its execution time is kept to a minimum as it only carries out logical

zero time activities such as reading sensors, updating task ports, and setting

actuators. The TDL Machine is however not responsible for the execution of task

functionality code. This must be handled externally, typically by the operating

system's scheduler.

The instruction set of the TDL Machine is small and consists of the nine instructions

presented in Table 1. For every module a separate sequence of E-Code instructions is

generated. It consists of a number of blocks, each block comprising all instructions

that must be executed for a specific module during one invocation of the TDL

Machine at a particular point in time. A block of E-Code is terminated with a return

instruction. TDL modes may consist of multiple blocks, whereas the last block of a

mode is followed by a jump instruction which lets execution continue at the

beginning of the first block of this mode.

An E-Code block might be further structured by the use of markers that indicate the

last termination driver (end of termination drivers – EOT) and the last actuator

update (end of actuator updates – EOA). The former is important for solving cyclic

dependencies between modules by first executing all termination drivers of all

modules and then continuing execution from there on. The EOA marker is required

for the correct simulation of TDL modules in simulation environments such as

MATLAB/Simulink. As these markers have no functional purpose, we encode them as

a nop(1) and nop(2) instruction respectively.

24 Timing Definition Language (TDL)

Instruction Meaning

nop(f)

A dummy (no operation) instruction. The

argument f is used as a marker for

identifying different sections in the E-Code,

such as the end of termination drivers and

the end of actuator updates.

call(d) Executes the driver d.

release(T) Marks the task T as ready for execution.

future(a, dt)
Plans the execution of the E-Code block

starting at address a in dt microseconds.

if(g, elsePC)
Proceeds with the next instruction if guard

g evaluates to true, else jumps to elsePC.

jump(a) Jumps to the instruction at address a.

return Terminates an E-Code block.

repeat(a, n)

Uses a counter per module for jumping n

times to instruction a. After that it

continues with the next instruction. This

instruction allows for compacting an E-

Code block which repeats itself.

switch(M)

Performs a mode switch to mode M, i.e.

the TDL Machine continues at the entry

point of M. In addition, the module's repeat

counter is set to zero.

Table 1. TDL Machine instruction set

The following lists an example E-Code obtained after compilation of the Receiver

module of the producer-consumer example from above:

00 call(1) // actuator init: setDisplay(display)

01 return()

02 call(0) // terminate task: consume

03 nop(1) // EOT - end of task terminations marker

04 call(2) // actuator update: display := o

05 call(1) // actuator setter: setDisplay(display)

06 nop(2) // EOA - end of actuator updates marker

07 call(3) // prepare task for release: consume

08 release(0) // release task: consume (uses consumeImpl)

09 future(11,10000)// continue at instruction 11 in 10000 us

10 return()

11 jump(2) // jump to instruction 2

The first block of E-Code (in this example code only instruction 0 and the

corresponding return instruction) is only executed once at system startup. It is used

for the initialization of actuators and task output ports. The call instruction executes

the driver with the index 1. This driver updates the actuator display by calling the

actuator update function setDisplay with the actuator port as argument. Drivers are

used to encapsulate functionality such as port copy operations in order to be able to

Timing Definition Language (TDL) 25

support different programming languages easily. There are also drivers for evaluating

guards, switching modes, and starting and stopping of task functions.

After initialization, execution continues at the entry point of the start mode of the

module. In our example there is only one mode and it is therefore the start mode. Its

entry point is instruction 7, which prepares task consume for execution by updating

its input ports. Afterwards the task is released and then the future instruction sets

the time and instruction where the TDL Machine must continue execution for this

mode. The future time is relative, i.e. instruction 9 means that after 10000

microseconds execution must continue at instruction 11. Instruction 11 is actually a

jump to instruction 2, which terminates task consume and subsequently updates the

corresponding actuators. This finishes the mode cycle as we again arrived at

instruction 7, the entry point of the mode.

The E-Code of the Sender module, which contains two modes, looks like this:

00 call(1), // actuator init: setDisplay(display) */

01 return()

02 nop(1) // EOT - end of task terminations marker

03 nop(2) // EOA - end of actuator updates marker

04 future(6,10000) // continue at instruction 6 in 1000000 us

05 return()

06 jump(2) // jump to instruction 2

07 call(2) // sensor getter: switch := getSwitch()

08 call(0) // terminate task: produce

09 nop(1) // EOT - end of task terminations marker

10 call(3) // actuator update: display := o

11 call(1) // actuator setter: setDisplay(display)

12 nop(2) // EOA - end of actuator updates marker

13 if(0,16) // if guard 0 is true goto 16; mode switch

 // guard: exitMain

14 call(4) // mode switch driver

15 switch(0) // mode switch -> freeze

16 call(5) // prepare task for release: produce

17 release(0) // release task: produce (uses produceImpl)

18 future(20,5000) // continue at instruction 20 in 5000 us

19 return()

20 call(0) // terminate task: produce

21 nop(1) // EOT - end of task terminations marker

22 nop(2) // EOA - end of actuator updates marker

23 call(5) // prepare task for release: produce

24 release(0) // release task. produce (uses produceImpl)

25 future(27,5000) // continue at instruction 27 in 5000 us

26 return()

27 jump(7) // jump to instruction 27

There is an initialization section comprising the first two instructions, then the E-Code

section for mode freeze spanning from instruction 2 to 6 and finally a set of

instructions for mode main from instruction 7 to 27. The E-Code follows the basic

pattern as presented for the Receiver module above, but additionally includes a

conditional mode switch handled by an if instruction (line 13) and the corresponding

switch instruction (line 15).

Note that the TDL compiler does not take any platform-specific aspects into account,

meaning in specific that the E-Code looks exactly the same no matter if modules are

distributed across multiple nodes or not. Platform-specific aspects are entirely

handled by the so called glue code, which will be discussed in 2.7.

26 Timing Definition Language (TDL)

2.5. Extensions for Asynchronous Activities

The most important recent extension to the TDL language is the integration of event-

triggered (alias asynchronous) activities. Before this extension, TDL only supported

the platform independent specification of the time-triggered aspects of a real time

system by the strictly periodic execution of statically scheduled activities, such as

task invocations and actuator updates. A pre-computed schedule guarantees that the

timing requirements of the system will be met in any case by taking the worst case

execution time (WCET) into account. Such operations are also called synchronous

(alias time-triggered) activities. The timing requirements of such activities are

typically in the range of milliseconds or sometimes even below.

While the time-triggered execution of periodic tasks provides the cornerstone of

dependable real-time systems, in addition many such systems execute asynchronous

activities that are, for example, triggered by the occurrence of an external hardware

interrupt or any other kind of trigger. In the context of a dependable real-time

system such asynchronous activities are considered to be not as time critical as

synchronous tasks are, and can therefore be executed in a background thread while

the CPU is idle otherwise.

The main challenge when adding asynchronous activities to TDL was to execute them

as timely as possible while not sacrificing the guaranteed execution of synchronous

activities. Furthermore, the data flow between the two domains must be properly

synchronized. Adding asynchronous activities could be done in a platform-specific

way by directly programming at the level of the operating system or task monitor

and so to speak "outside" of TDL. However, this approach has two drawbacks: (1) it

is platform dependent and (2) it does not support proper synchronization of data

exchanged between synchronous and asynchronous activities. Therefore we

extended TDL by a notation for asynchronous activities and provided a runtime

system for this extended TDL language on a number of target platforms.

An asynchronous activity in TDL is an activity that is carried out in the spare time

between the execution of time-triggered (synchronous) activities and thereby does

not disturb the real time properties of a system. Figure 5 refers to Node1 of the

producer-consumer example from above and indicates the physical execution of task

produce and the spare time available for the execution of asynchronous activities. To

keep the processing of asynchronous activities simple and as we assume that they

are not as time-critical as synchronous tasks, we do not allow asynchronous activities

to be preempted by other asynchronous activities but only allow preemption by

synchronous activities. The TDL runtime system takes care of the synchronization of

the data flow between synchronous and asynchronous activities such that reading

input ports, updating output ports, and performing actuator updates are atomic

actions.

t Sender Sender produce produce produce produce

LET 5 ms

Node1

spare time for asynchronous activities (background task)

physical task execution

Figure 5. Integration of asynchronous activities

Timing Definition Language (TDL) 27

Asynchronous activities are introduced at the level of the TDL module construct.

Every module may optionally declare asynchronous activities as the last section
within the module construct using the asynchronous keyword. The following version

of the producer-consumer example from above uses the same tasks and data flow

but both tasks are now triggered asynchronously. The producer task is triggered by

an external interrupt and the consumer task by the update of the output port of the

producer task.

module Sender {

 actuator int display uses setDisplay;

 public task produce {

 output int o := 10;

 uses produceImpl(o);

 }

 asynchronous {

 [interrupt=intLine1, priority=5]

 produce(); display := produce.o;

 }

}

module Receiver {

 import Sender;

 actuator int display uses setDisplay;

 task consume {

 input int i;

 output int o;

 uses consumeImpl(i, o);

 }

 asynchronous {

 [update=Sender.produce.o]

 consume(Sender.produce.o); display := consume.o;

 }

}

TDL supports the grouping of asynchronous activities into sequences that are

triggered as one unit and executed strictly sequential. Any such sequence has an

associated trigger event, an optional guard, and a sequence of asynchronous

activities. An asynchronous activity may be a task invocation or an actuator update.

In both example modules above, the producer and consumer task invocation is

immediately followed by a corresponding actuator update. A task may either be

invoked synchronously or asynchronously but not both. Also, an actuator update

must either be done synchronously or asynchronously but not both. Note that mode

switches are the only TDL activity which cannot be invoked asynchronously, as a

mode switch must be synchronized with the corresponding mode period and must

not preempt any synchronous task.

Triggering an asynchronous activity sequence means that the sequence is registered

for execution at some later time at the discretion of the TDL runtime system. Any

additional triggering of a registered activity sequence is ignored until the execution of

28 Timing Definition Language (TDL)

this activity sequence starts. Parameter passing takes place as part of the execution

not at the time of registration.

The kind of event that triggers the execution of an asynchronous activity sequence is

specified by the attribute name interrupt, update, or timer, where the first two

can be found in the examples above. In case of an interrupt, the attribute value must

be an identifier which needs to be mapped to platform-specific interrupt

specifications, e.g. to a specific hardware interrupt pin, outside the TDL source code.

This identifier is intLine1 in the Sender module above. In case of a port update, the

attribute value must be the name of an output port. For the asynchronous activity in

the Receiver module, this port is the output port of the producer task,

Sender.produce.o. Whenever this port receives a value, it triggers the

asynchronous activity sequence. In case of a timer, the attribute value must be an

integer greater than zero. It describes the period of a timer in microseconds.

The priority of an asynchronous activity sequence is specified by the attribute name

priority and a value greater or equal to zero, where higher numbers mean higher

priority. The default priority is the lowest value. Only a single asynchronous activity

is executed in the spare time between synchronous activities until it finishes. The

priority attribute determines which activity is executed next by affecting the queuing

order of registered asynchronous activity sequences. Therefore it should not be

mixed up with a thread priority level.

2.6. Visual TDL Tools

For the development and editing of TDL modules and complete TDL systems, two

visual tools are available. The TDL:VisualCreator is used for the platform-

independent editing of TDL modules, while the TDL:VisualDistributor enables the

deployment of TDL modules on a concrete, potentially distributed, target platform. In

the following we describe both tools in detail.

The TDL:VisualCreator is a syntax-driven, graphical editor for TDL modules.

Consequently, it supports the full feature set of the TDL language and allows the

import and export of arbitrary TDL code. Figure 6 shows the user interface of the

TDL:VisualCreator, depicting the Sender module of the producer-consumer example

as presented above. The interface is divided into three main parts. To the left there

is a tree representation of all constructs of a module. Specific properties of these

elements, e.g. the period of a mode or the frequency of a task, can be edited in

property fields below. The large modeling canvas to the right is used to model data

flow, e.g. between a task's ports and ports of other tasks, sensor, and actuators with

respect to a specific TDL mode.

In addition to running the TDL:VisualCreator tool standalone, it can also be run

integrated in MATLAB/Simulink [16]. Simulink is a commercial tool by The Mathworks

for modeling, analyzing and simulating dynamic systems. It is widely used for control

applications, including automotive system engineering. Simulink is tightly integrated

with MATLAB and offers a block diagram style interface. The Simulink integration

enables additional features of the TDL:VisualCreator, namely the usage of standard

Simulink blocks for the design of the functionality of TDL tasks and the simulation of

the behavior of complete TDL systems. Due to the LET abstraction, this simulation is

guaranteed to be equal to the observable behavior the system will show when it is

finally executed on a concrete hardware platform. This is a unique feature in

comparison to other simulation tools for potentially distributed systems, which

typically take platform details such as processor speed and communication protocol

latencies into account in order to obtain an accurate simulation result. Using TDL,

systems can be precisely simulated even before the target platform is even known as

Timing Definition Language (TDL) 29

the LET abstraction exactly specifies the behavior in the time and value domain. This

behavior is also guaranteed when it is later executed on any hardware platform by

means of the TDL Machine discussed above. The only notable exception, for which

accurate simulation independent from the platform is not possible, are TDL systems

which incorporate asynchronous activities. Those are simulated as soon as the

corresponding trigger event occurs and in logically zero time or within their WCET if

one is given. This limitation is inherent to the chosen semantics of asynchronous

activities, which are executed as a background task on the platform and are

supposed to be used for non-critical tasks. For details on the Simulink integration

and simulation refer to [13].

While the TDL:VisualCreator's purpose is to provide platform-independent modeling,

the TDL:VisualDistributor is used for mapping TDL programs to specific platforms and

eventually to generate code for the complete TDL system. It is a frontend for the

deployment of TDL modules on a potentially distributed hardware platform. It allows

specifying the platform, i.e. the nodes and communication buses connecting them.

Support for an open ended set of communication and node platforms can be added

via a plug-in architecture. When mapping a TDL module to a concrete node, a

platform-specific Worst Case Execution Time (WCET) must be set for every task of a

module running on this node. Furthermore, the sensors and actuators of a TDL

module must be assigned to specific hardware devices either by specifying an

external function or via a graphical interface in case the corresponding node plug-in

supports that. Finally, the complete code for the system can be generated. This also

triggers the fully automatic communication schedule generator which determines the

communication requirements of TDL modules by their deployment to nodes. When

using the MATLAB/Simulink integration feature of the TDL:VisualDistributor, the

functionality code can also be generated automatically from the Simulink model by a

standard MATLAB tool named Real-Time Workshop Embedded Coder (RTW-EC). The

Figure 6. TDL:VisualCreator user interface

30 Timing Definition Language (TDL)

next section contains a detailed overview of the code generation process and the

complete TDL tool chain which is controlled by the TDL:VisualDistributor.

2.7. TDL Tool Chain

The previous sections explained the TDL Compiler and the TDL Machine as well as

the two front-end visual tools TDL:VisualCreator and TDL:VisualDistributor. All these

are core parts of the TDL tool chain which we will look at in detail in this section and

explain how code generation by the click of a button is realized. As pointed out

above, the TDL Compiler does not take any platform-specific information into

account. This information is contained in the so-called glue code, which is platform-

specific and is required in order to obtain a functional TDL system. All tool chain

components and tools are implemented in Java 1.5, whereas generated the glue

code can be in any language or format which a target platforms requires.

In short, the glue code comprises all code and information which is needed to

execute TDL modules on a potentially distributed platform. What it actually contains

highly depends on the specific target platform. When for example an operating

system which includes a file system is used, it is possible that the TDL Machine

directly reads and interprets the E-Code file. On a single node system, all that needs

to be done then to get a working TDL system is to ensure the task functionality code

is executed by the operating system's scheduler at the proper time instants. Without

a file system, E-Code must be represented for example as C code. Distributed

systems however require extra glue code for the initialization and utilization of the

communication system connecting the nodes.

Figure 7. TDL:VisualDistributor user interface

Timing Definition Language (TDL) 31

Apart from the different requirements of individual platforms, Figure 8 sketches the

basic tool chain elements which are required for the code generation for every

Target

Platform

1

TDL Runtime System

(TDL Machine &

Comm Layer)

TDL Compiler

Distributor

Model

TDL:VisualDistributor TDL:VisualCreator MATLAB/

Simulink

Functionality

code

Functionality

code

Functionality

Code
Module

TDL Code

Module

TDL Code

Module

TDL Code

data flow

processing step

data per module

data per node

data per system

E-Code E-Code E-Code Abstract
Syntax Tree

Abstract
Syntax Tree

Abstract
Syntax Tree

Node

Glue Code
Module

Glue Code

schedulability check

Node Platform
Plug-in

Comm Scheduler

Comm Platform

Plug-in
Communication

Schedule

for distributed systems

Node

Glue Code
Module

Glue Code

Module

Glue Code

Figure 8. TDL tool chain overview

32 Timing Definition Language (TDL)

potentially distributed TDL system. On top, we have the TDL:VisualCreator which can

be used to create the code of TDL modules and MATLAB/Simulink which optionally

generates the corresponding module functionality code. The TDL:VisualDistributor

acts as an editor for platform-specific details of modules and nodes, as well as for the

mapping of modules to nodes. Furthermore, it controls and coordinates all entities of

the TDL tool chain. These three tools are optional (indicated by the dashed arrows) in

the sense that it is also possible to provide TDL modules, functionality code, and

distributor model in textual form and run the whole code generation process by using

the TDL:VisualDistributor in batch mode.

The first processing step is the invocation of the TDL compiler which compiles all

modules of the system and creates one E-Code file per module. Note that an E-Code

file does not only contain E-Code instructions, but also information on drivers,

guards, and asynchronous activities, among others. In addition, the TDL compiler

provides the abstract syntax tree (AST) to the communication and node platform

plug-ins. Just like binary E-Code files, the AST also contains all information of a

compiled TDL module, but in the form of Java objects in order to speed up and

simplify the interaction between tool chain entities.

If the TDL system consists of more than one node, those nodes must be connected

by some type of communication network. In such a case, a network schedule is

generated by the Comm Scheduler. It analyzes the modules and determines the

communication requirements between nodes by considering the module to node

mapping found in the distributor model. Specific communication protocols are

supported via the Comm Scheduler plug-in, which takes properties such as the frame

layout and speed of the protocol into account. TDL specific communication

information is written to a file called Comm Schedule. This data consists for example

of the exact mapping of TDL output ports to communication frames by using so-

called dynamic multiplexing. This scheduling approach allows the creation of a static

schedule for a TDL system whose modules are able to change modes dynamically

and independently. It is explained in detail in section 4.3. To ensure the created

schedule leads to a schedulable system overall, the Comm Scheduler interfaces with

the Node Platform plug-in to check whether it is able to find a corresponding task

schedule on basis of the timing of the communication frames. This approach avoids

that a communication schedule is generated for which eventually no task schedule

can be found.

In contrast to the Comm Scheduler, which is called once per communication bus, the

Node Platform plug-in is called once for every node in the system. It is also possible

that different types of platform plug-ins are invoked in case the system consists of a

set of heterogeneous nodes. The purpose of a Node Platform plug-in is to generate

glue code which allows the execution of a TDL system on a target platform. It uses

configuration properties from the distributor model, the abstract syntax tree of all

modules and the communication schedule provided by the Comm Scheduler in case

the system is distributed. The generated glue code consists of module and node glue

code. For distributed systems, the glue code also comprises so-called stub modules

which act as a remote instance of a module when it is imported by another module

on a remote node.

Apart from corresponding platform plug-ins, a TDL Runtime System must be

implemented in order to support specific node and communication platforms. It

consists of the TDL Machine, which ensures the proper timing of the system

according to the LET semantics, and the TDL Comm Layer, which handles

communication between TDL modules if they are located on different nodes of a

distributed system. In contrast to the glue code, the TDL Runtime System is static

code, i.e. it does not depend on concrete TDL modules.

Timing Definition Language (TDL) 33

Now we have all building blocks for a complete TDL system, namely the module

functionality code, module E-Code, the TDL Runtime System and the module and

node glue code. A final processing step might be necessary to integrate all these

elements for execution on a platform, e.g. compilation and linking on C-based

platforms.

2.8. Related Work

This section compares the TDL language and tools to related approaches for the

design of distributed real-time systems, which employ different with different models

of computation.

Giotto

As already pointed out above, TDL inherits its basic concepts, most importantly the

Logical Execution Time abstraction, from the Giotto language [3]. However, TDL

extends Giotto by a number of features. These include a more convenient syntax,

more control over the timing of periodic activities by the introduction of slot

selection, and the ability to update actuators right after the completion of a task (so-

called task sequences). Further notable extensions are (1) the addition of a

component model by means of the module construct and (2) the integration of

asynchronous activities. The latter is especially significant as Giotto only allows the

specification of purely time-triggered activities, while TDL adds support for event-

triggered activities. Apart from the listed language related improvements, a full-

fledged tool chain exists for TDL, which features graphical modeling tools, simulation

support and code generation for distributed systems. The TDL tool chain enables the

application of Giotto concepts in real-world industrial projects.

xGiotto

xGiotto [4] is, as the name already implies, an extended version of Giotto. Most

importantly, it adds an implementation language for the body of a task and

asynchronous event handling by means of a new syntax for expressing time-

triggered and event-triggered activities.

Adding a new language for the functionality code significantly increases the

complexity of xGiotto and its tool chain. It is not clear to us what the advantage of

this extension for a real-time system is, given that it is supposed to be compiled into

so-called F-code, which is an instruction set for a virtual stack machine that needs to

be interpreted at run-time.

The new syntax is based on a mechanism called event scoping. An event scope (also

called a reaction block) defines the actions to be taken in a given time span which

will be terminated after a specified time or by the occurrence of a specified event.

xGiotto builds on the assumption that asynchronous events reoccur only after a

certain waiting time. Event scopes may be nested and, by means of special

statements and options, they allow a variety of patterns to be specified for the

activities inside an event scope. Besides some exceptions with non-harmonic mode

switches, this includes all possibilities of Giotto programs and it adds the execution of

LET-based asynchronous task invocations. Event scoping also separates the LET of a

task invocation from its execution period, which is similar to TDL's slot selection

approach. In fact, many xGiotto examples can be transformed to TDL in a straight-

forward way, including the xGiotto asynchronous activities, which can be expressed

as guarded synchronous task invocations within selected slots. xGiottos's event

scoping syntax looks somewhat verbose and in particular, the timing behavior of an

asynchronous task invocation is hard to read because it depends on all reaction

34 Timing Definition Language (TDL)

blocks within the same container scope as the asynchronous task invocation. In

contrast, TDL sticks more closely to the lean Giotto syntax for specifying

synchronous activities and adds additional constructs for specifying asynchronous

activities.

The handling of events differs between TDL and xGiotto. There is no guarantee when

and if at all an event is handled in TDL whereas in xGiotto the time until an event is

processed is bounded according to the specification of the event scope. Also in

contrast to xGiotto, in TDL there is no LET assigned to an asynchronous activity as

ports are read and written right before and after its execution. TDL's advantage is

that it can also express long-running background tasks for which a reasonable worst

case execution time is not available.

Further notable differences between xGiotto and TDL are the lack of a component

model and that xGiotto is not targeted at distribution. To our knowledge, there is

also no simulation support available for xGiotto.

Hierarchical Timing Language

The Hierarchical Timing Language (HTL) [5] is another language which bases on the

LET abstraction introduced by Giotto. Its name is derived from the ability to

hierarchically refine abstract task invocations at a later point in time. Although this

refinement does not add expressiveness, as refined code can also be expressed by

an equivalent non-refined one, it results in a much more compact representation and

simplifies program analysis and schedulability tests.

A key concept in HTL is the notion of communicators. Those are typed variables used

to arrange time-triggered data flow and are only accessible at specific, periodic time

instants. Communicators define a fixed communication matrix used throughout a HTL

system. The LET of a task results from the communicator instances it reads from and

writes to. This approach allows for decoupling the LET from the execution period of

tasks and also provides support for task sequences. In TDL, these goals are achieved

by slot selection which provides even more flexibility because TDL allows that a task

is invoked several times per mode period and that each invocation specifies its own

LET.

HTL uses modules for parallel composition and as units of distribution in a similar

way as TDL does. However, HTL modules are neither independent nor self-contained

and therefore not truly reusable as they depend on globally defined communicators

and their timing. Furthermore, there is no way to specify asynchronous activities in

HTL.

Synchronous Languages

Synchronous languages base on the synchrony hypothesis, which states that the

output of a system is synchronous with its input. Internal actions are considered to

be instantaneous and also communications are performed via instantaneous

broadcasting, i.e. every computation is assumed to be executed by an infinitely fast

machine and therefore takes zero time. Synchronous languages are designed to

program reactive systems, which are systems that maintain a permanent interaction

with their environment. Synchronous programs react to some stimulus, i.e. events,

by computing some output based on the input and the state of the program, hence

also the term synchronous reactive programming is used to describe this

programming discipline. Prominent examples of synchronous languages are the

declarative, data flow language Lustre [17] and Esterel [18], which represents an

imperative synchronous language with explicit control flow.

Timing Definition Language (TDL) 35

Actual machines for which the ideal synchronous model is realistic do exist, for

example strongly synchronized hardware or VLSI architectures, where internal

actions and communications occur with on clock tick of the system [19]. Typical

implementations however are targeted at asynchronous platforms and only

approximate synchrony by computing any reaction to an event as fast as possible

and before the next event occurs. Obviously, it highly depends on the power of the

execution platform how accurate that approximation is and response time may vary

significantly in practice. Implementing the synchronous model has been proven to

work for single node systems, but it is no longer feasible when additionally the

communication delay of a distributed system is introduced.

In TDL, the synchrony hypothesis is applied only to the TDL Machine, whose

execution is assumed to take logical zero time. It is however not applied to

computational tasks or network communication, which both are considered to be

long running operations with a significant execution time (the LET) that cannot

simply be ignored. The LET abstraction of the so-called timed model does not only

result in value-deterministic systems as the synchronous model does, but also in

time-deterministic ones, as the reaction time of the system does not depend on the

execution platform in any way [20].

Timed Multitasking

Timed Multitasking [21] is another time-centric programming model which aims at

the inclusion of timing properties at the programming level so that they are

preserved throughout the software lifecycle. Out of criticism of the purely time-

triggered Giotto model, which is incapable of handling sporadic events, Timed

Multitasking uses events and deadlines instead of time triggers. Tasks, which are

called actors and communicate between each other via ports, are activated when

their inputs fulfill certain criteria, i.e. when an associated trigger condition such as

the activation of an interrupt is met. However, the results of the task's computation

are only available to other tasks at the task's deadline. Although the triggers of

actors are unpredictable in general, this results in deterministic timing behavior

regarding the reaction time of actors, which is a valuable property for control

algorithm design. When no deadline is specified, an actor's outputs are available

immediately. An actor's execution can be preempted within the interval between the

trigger event and its deadline. The execution time of an actor must be specified, but

it does not necessarily have to be its worst-case execution time (WCET) as for Giotto

and TDL tasks. Due to this fact, but also as for an event-triggered system it is

generally impossible to guarantee that all actors will meet their deadlines, the Timed

Multitasking approach must handle missed deadlines. This is accomplished by so-

called overrun handlers, which are application-dependent and for example can be

used to bring the system into a safe state when a specific actor is nor able to finish

by its deadline.

After specifying all timing properties at design time, the Timed Multitasking model is

compiled to be executed on a specific runtime system. This step is called software

synthesis or code generation and transforms the model into executable code, i.e.

software tasks and interrupt service routines (ISRs). In combination with the runtime

system this code ensures the function and time determinism of the system.

Timed Multitasking has also been extended to support remote communication in

distributed real-time systems, an approach which the authors named Distributed

Timed Multitasking [22]. Distribution is implemented by transmitting the ports

connecting the actors via a communication network using global signals. Although it

is transparent to the individual actors if their inputs come from a local or remote

actor, the timing behavior might actually be different as communication time

36 Timing Definition Language (TDL)

between actors differs depending on whether network or local communication is

required and on what type of network is used.

In contrast to Timed Multitasking, TDL overcomes Giotto's lack of event support by

the introduction of asynchronous activities as described above, but without sacrificing

any of the real-time properties of time-triggered tasks. There is no need for overrun

handling in TDL, as time-triggered tasks are guaranteed to finish in time because

their WCET must be specified and asynchronous activities simply run until their

completion. However, high priority event-triggered tasks must be represented as

time-triggered tasks, for which TDL's slot selection provides more flexibility than for

example Giotto. In distributed TDL systems, it is not only transparent from which

node a port comes from as in Distributed Timed Multitasking, but it is also available

at the exact same time instant independent from whether network communication is

required or not, thus providing complete transparency.

3. TDL Runtime System

The TDL Runtime System enables the execution of TDL modules on a target

hardware platform. As illustrated by Figure 9, it represents a middleware layer

between TDL modules and the hardware platform, which includes the operating

system, hardware drivers, and the communication interface. It thereby abstracts

from concrete platforms and ensures TDL modules are executed according to the TDL

semantics regardless of the target platform.

Claudiu Farcas also developed a TDL runtime system including a platform abstraction

layer [7], but which lacked event-triggered processing and a modular communication

layer. In contrast, our runtime system allows executing asynchronous activities,

introduces a plug-in concept for the TDL Comm Layer, and improves support for non-

preemptive platforms. Furthermore, we add support for TDL extensions, such as

structured data types, global output ports, slot selection, and the cyclic import of TDL

modules.

Figure 10 depicts a more detailed view of the TDL system components developed for

the C programming language. It shows the TDL Runtime System (indicated by the

boxes with thick borders) and how it is connected to the generated glue code (gray

boxes) and other entities such as hardware drivers, the operating system, and the

functionality code of TDL modules. Note that the file names of generated glue code

files are postfixed with an underscore. The figure shows the include relationships

between entities which represent C header and body files. An arrow pointing to an

entity indicates that it includes the source file or library from which the arrow

originates. The elements inside the dashed bounds are only required for distributed

systems. The developed runtime system is a framework as the TDL Machine calls

TDL Modules

TDL Runtime System

Operating
System

Hardware
Drivers

Communication
Interface

Figure 9. TDL system layers

38 TDL Runtime System

hooks for drivers, guards and module initialization functions which are accessed

through structures in the module glue code, which represents compiled TDL modules

as C code so that it is not necessary to read E-Code files on embedded platforms.

A complete TDL system consists of the following entities:

 TDL Runtime System

The runtime system is static code which is used in every TDL system in the

same way and is therefore application- and platform-independent, with the

exception of communication protocol-specific plug-ins to the TDL Comm Layer

for distributed systems

tdl_main_

Node glue code

tdl_machine

TDL Machine

tdl_comm

Comm Layer

tdl_comm_[platform]

Platform-Specific

Comm Layer Plug-ins

Communication

drivers

Hardware

drivers

[module]_

Module glue code

[module]

Functionality code

A B

Operating

system

tdl_async

Async Handler

Glue code generated
by code generation

framework

Entities only
required for

distributed systems

TDL Runtime
System

Entity A includes
entity B

Figure 10. TDL Runtime System include relationships

TDL Runtime System 39

framework. It is divided into the following parts which we describe in detail in

this chapter:

o TDL Machine (tdl_machine.c/h)

The TDL Machine's main purpose is to interpret E-Code and thereby

guarantee the execution of TDL modules according to the timing behavior

they specify. See section 3.1.

o TDL Async Handler (tdl_async.c/h)

The Async handler implements a priority queue for the execution of

asynchronously triggered activities specified in TDL modules. See section

3.2 for details on the synchronization mechanism for the data flow

between synchronous and asynchronous activities and its implementation

in the context of the TDL Runtime System.

o TDL Comm Layer (tdl_comm.c/h, tdl_comm_<platform>.c/h)

The TDL Comm Layer framework is only required for distributed TDL

systems and consists of a communication platform-independent part

(tdl_comm) and platform-dependent plug-ins (tdl_comm_<platform>). It

abstracts from the concrete communication protocol used and provides

functions which transfer TDL ports via a specific communication bus. It is

described in 3.3.

o TDL type mapping (tdl_types.h)

A file named tdl_types.h maps TDL types to C language types so that the

size of every type corresponds to that defined in the TDL language. A

default mapping is provided but it can also be altered for specific compilers

and platforms. The type mapping header file is not shown in the figure

above but it is used by all TDL Runtime System entities and also by the

glue code. The default type mapping is as follows:

 typedef unsigned char tdl_boolean; //1 bit flag

 typedef signed char tdl_byte; //1 byte integer

 typedef unsigned char tdl_char; //1 byte character

 typedef short int tdl_short; //2 byte integer

 typedef long int tdl_int; //4 byte integer

 typedef long long int tdl_long; //8 byte integer

 typedef float tdl_float; //4 byte floating point

 typedef double tdl_double; //8 byte floating point

 Glue code

The so-called glue code comprises all dynamically generated C code required

to execute TDL modules on a potentially distributed system. It is specific to the

application (i.e. the TDL modules) on one hand and the platform of the TDL

system on the other. We call the former part of the glue code the module glue

code and the latter the node glue code, which is contained in the TDL main file.

Both are generated by the code generation framework which we introduce in

chapter 1. In the distributed case, the framework takes the module to node

assignment into account and computes a suitable communication schedule.

The code generation framework supports concrete communication protocols

and hardware platforms via a plug-in mechanism.

40 TDL Runtime System

o TDL main file (tdl_main_.c)

The so-called main file or node glue code exists once per node. It contains

initialization code for the runtime system and ensures the periodic

invocation of the TDL Machine. In case of a distributed system, it

additionally is responsible for the synchronized startup of the system and

proper time synchronization between nodes during runtime. The TDL main

file must interact tightly with the specific operating system and

communication protocol employed on the platform and is therefore highly

platform-specific.

o TDL module glue code (<module>_.c/h)

For every TDL module a C file is generated, which contains the modules'

drivers, guards, and runtime data structures so that it can be executed by

the TDL Machine. The TDL Machine operates mostly on the data structures

provided in the module glue code. In case the target operating system

does not incorporate a file system and is therefore not capable of handling

E-Code files, the module glue code also contains the E-Code represented

as C structures. E-Code is stored as an array of structs consisting of an

operation code indicating the E-Code instruction and two arguments,

which is shown in detail in subsection 3.1.1. For distributed systems, the

module glue code also comprises so-called stub modules which act as a

remote instance of a module when it is imported by another module on a

remote node. Furthermore, the module glue code for distributed systems

interfaces with the TDL Comm Layer to transmit port values.

 Other Entities

o TDL module functionality code (<module>.c/h)

The functionality code exists once per module. It contains the

implementation of tasks, guard functions, sensor getters and actuator

setters. It can be hand-written C code or also generated code from

external tools, e.g. the Real-Time Workshop integrated in

MATLAB/Simulink.

o Hardware drivers

These are low-level drivers which enable the interaction with the physical

environment via sensors and actuators. They are typically mapped to TDL

sensors and actuators in the module functionality code or by automatically

generated wrapper code located in the module glue code.

o Communication drivers

Communication drivers are used to interface with the communication

infrastructure which interconnects nodes of a distributed TDL system.

Apart from functions to send and receive frames, communication platform-

specific plug-ins to the TDL Comm Layer framework also require functions

for synchronizing the time base of the protocol to the node time base. In

case such functions are not available, which is typically the case with non

time-triggered buses, a TDL Comm Layer plug-in must implement time

synchronization algorithms itself.

TDL Runtime System 41

o Operating System

Operating system functions are typically utilized by the TDL main file in

order to ensure the periodic execution of the TDL Machine and to interface

with hardware interrupts which can be used as triggers for asynchronous

activities.

In section 3.1 we present our implementation of the TDL Machine. Section 3.2

introduces a generic synchronization mechanism for the integration of time-triggered

and event-triggered activities in a real-time system. We also describe its application

in the TDL Async Handler and the required TDL Machine adaptations. As the last part

of the TDL Runtime System, we present the TDL Comm Layer framework in section

3.3. Note that this chapter is solely on platform-independent aspects of the TDL

Runtime system. Details about the prototyping hardware and the corresponding

platform-specific adaptations can be found in chapter 1.

3.1. TDL Machine

The TDL Machine is responsible for interpreting the E-Code of all modules executed

on a node. It therefore represents the core of the TDL Runtime System, as it

orchestrates the timing and data flow as specified in the TDL modules on a concrete

hardware platform. This section describes the implementation of the TDL Machine for

our C runtime system, whereas the details of E-Code interpretation were already

discussed in section 2.4.

There exists only a single instance of the TDL Machine per node, which handles all

modules assigned to this node. For every module the TDL Machine executes drivers,

evaluates guards, interprets E-Code, and updates module runtime information.

Drivers are used in a TDL runtime system to encapsulate port copying operations and

the execution of sensors, actuator and task functionality code.

The TDL Machine is initialized with the TDL modules assigned to a node. For this

purpose, the TDL Machine code provides data structures to represent a module's

modes, drivers, E-Code and runtime data. These structures are utilized in the module

glue code to specify concrete modules and to initialize the TDL Machine. For

performance reasons, we only use static data structures. Execution time is critical

here, as the TDL Machine is logically executed in zero time.

After initialization, the TDL Machine's so-called step function is invoked repeatedly at

a fixed interval to execute all module-related actions to be performed at a specific

time instant. We call its invocation period the step period. It is determined by the

code generation framework which also configures the platform's operating system so

that the TDL Machine is timely executed. The step period is calculated as the

greatest common divisor (GCD) of the periods of all activities which must be

performed for all modes of all modules executed on a node. Every such period the

TDL Machine advances the individual time for each module and checks whether there

is something to do for the currently active mode, i.e. it checks whether the

reactivation time set by the last future instruction did already pass.

Conceptually, the TDL Machine is not responsible for the actual execution of tasks,

but only for ensuring the proper timing of TDL modules by interpreting their E-Code

and by executing sensor and actuator code. However, we optionally included a

simple dispatcher in our implementation as the time instants when the TDL Machine

runs can also be used to execute task functionality code on non-preemptive systems.

For that purpose, a dispatch table is generated which contains information on what

tasks to execute on these time instants. The dispatcher is activated via the compiler

42 TDL Runtime System

flag TDL_DISPATCHED, which is also used to alter data types so that the relevant

elements are only enabled when required.

The TDL Machine is implemented in the files tdl_machine.c and the corresponding

header file tdl_machine.h. Those files include support for distribution and for the

execution of asynchronous activities and also the optional non-preemptive task

dispatcher. Whether distribution support is activated can be selected with the

TDL_DISTRIBUTED compiler flag. If TDL_DISTRIBUTED is not set the TDL Machine is

configured to run in stand-alone and therefore single node mode without any

communication layer. Otherwise, the TDL Comm Layer is included and used to

communicate with other nodes in a distributed system. In the following three

sections we will describe the TDL Machine's initialization, its step function and the

optional dispatcher in detail.

3.1.1. Initialization

The TDL Machine must be initialized at node startup with a list of modules and a step

period via the function tdl_machine_init:

void tdl_machine_init(tdl_machine_Module** modules,

 int nofModules,

 long int stepPeriod);

As parameters a pointer to a list of modules, the number of modules and the step

period are passed. The step period is the greatest common divisor (GCD) of all

periods of all actions the TDL Machine has to perform. It is the time that passes

between two invocations of the tdl_machine_step function.

Upon initialization, the module initialization function in the functionality code

(<module>_init()) is called for every module. Then the E-Code interpreter function

is called for every module in order to execute the initialization section of the E-Code,

which is done by executing the code from the first instruction until the first return

instruction. After that the program counter is set to the beginning of the start mode.

The list of modules consists of structures of the type tdl_machine_Module which

contains all data concerning a module. This includes the E-Code and numerous hook

function pointers e.g. for drivers which are called by the TDL Machine:

typedef struct

 tdl_machine_ECode *ecodes; //pointer to the module E-Code table

 int nofEcodes; //number of E-codes in the module E-Code table

 tdl_machine_Mode *modes; //pointer to the modes table of the module

 int nofModes; //number of modes in the module

 void (*init)(void); //function pointer to module initialization

 char (*guards)(int); //function pointer to the guards wrapper

 void (*sdrivers)(int); //function pointer to start/stop drivers

 //wrapper

 void (*drivers)(int); //function pointer to the drivers wrapper

 tdl_machine_RuntimeData *runtime; //module runtime data

 long int *taskWCETs; //pointer to list of task WCETs

} tdl_machine_Module;

The E-Code of a module is represented by means of the following C structure,

containing an operation code and two arguments. Note that we eliminated the need

for a third argument in comparison to earlier implementations [7].

typedef struct {

 char opcode;

 long int arg1;

 long int arg2;

TDL Runtime System 43

} tdl_machine_ECode;

TDL modes are stored using another data structure. For the structure of the optional

dispatch table see subsection 3.1.3.

typedef struct {

 int pcBegin; //E-Code entry point of the mode

 long int period; //mode period

#ifdef TDL_DISPATCHED

 tdl_machine_DispatchEntry *dispatchEntries; //dispatch table entries

#endif

} tdl_machine_Mode;

The runtime data of a module (tdl_machine_RuntimeData) stores state information

during the execution of a module. Upon initialization, all values are set to 0, with the

exception of the mode, which is set to the index of the start mode of the module.

typedef struct {

 int nextPC; //next program counter

 long int futureTime; //future time relative to mode period

 int repeatCnt; //repeat counter

 int mode; //current mode of the module, also used to set start mode

 long int time; //time relative to beginning of mode

 char eot; //flag to check if emachine encountered a EOT (=NOP(1))

 //instruction (end of termination drivers)

#ifdef TDL_DISPATCHED

 int dispatchTableIndex; //current index of the dispatch table

#endif

 char *tasksActive; //flag for every task; 1 if task is enabled, 0 if

 //guard evaluates to false

} tdl_machine_RuntimeData;

Note that in addition to this runtime data structure, the state of a module also

consists of the current values of its ports. Those are declared in the module glue

code and are not directly accessed by the TDL Machine but via the corresponding

drivers. Ports are initialized by the first E-Code section of a module.

3.1.2. Step Function

void tdl_machine_step(void);

The function tdl_machine_step performs all periodic actions of the TDL Machine for

all modules on a node. It must be called exactly every step period. The operating

system must be configured accordingly, which is done in the TDL main file which is

part of the generated glue code. It can for example be implemented via an entry in a

dispatch table, a task that is scheduled periodically or directly via programming a

timer interrupt.

The step function first checks for every module if its future time is already reached.

If that check is positive, it executes a block of E-Code starting at the current position

of the program counter until an eot or return instruction is reached. eot stands for

end of termination drivers and is represented by a nop(1) E-Code instruction. It

indicates that all termination drivers for the current TDL Machine step have been

executed. It is important that all termination drivers of all modules are called first, as

modules might cyclically import output ports from other modules and the termination

drivers are responsible for updating these ports.

Subsequently, the modules are iterated again and all modules whose E-Code

interpretation had been interrupted by an eot instruction are processed until a

44 TDL Runtime System

return instruction is reached. Finally, the individual time of each module is increased

by one step period length.

Support for asynchronous activities requires some specific adaptations to the step

function, which we describe when introducing the TDL Async Handler in section 3.2.

3.1.3. Non-Preemptive Dispatcher

Our C implementation of the TDL Machine includes an optional dispatcher which can

be used to execute task functionality code on non-preemptive platforms. As an

alternative, tasks dispatching can, for instance, also be handled by the operating

system's scheduler. The dispatcher runs as a last step in the TDL Machine step

function when it is compiled into the code by setting the TDL_DISPATCHED compiler

flag. It then sequentially executes the task functionality code of modules without any

preemption according to a dispatch table which is generated for every module. An

offline scheduler and a given worst-case execution time (WCET) for every task

guarantee the time safety of this implementation. A notable limitation is that no task

can be executed whose WCET is larger than the step period of the TDL Machine. This

limits the ability to have long running time-triggered tasks and tasks with a short

period coexisting on a node. Note that as an alternative, long running background

tasks can be specified as asynchronous tasks.

The following structure stores dispatch table entries by means of an array in the

mode structure (see 3.1.1), meaning there exists one such table for every mode of a

module. It contains a task ID which is used to execute the appropriate start driver, a

stop driver ID which is executed upon task termination, and a time instant which is

relative to the mode period and indicates the time the task is scheduled.

#ifdef TDL_DISPATCHED

typedef struct {

 int task; //task id (equals start driver id)

 int stopDriver; //stop driver id or -1 if none

 long int time; //time when task is scheduled

} tdl_machine_DispatchEntry;

#endif

The TDL Machine maintains an individual mode time (relative to the beginning of a

mode) per module, which is increased by one step period duration in every TDL

Machine step. For every active mode, the dispatcher executes all tasks in the table

which are scheduled within the interval starting at the current time and ending at the

current time plus the step period.

In case of a distributed system, the dispatcher also takes care of sending task output

ports via the communication bus. It does so by calling the TDL Comm Layer function

tdl_comm_sendFramesWithinInterval (long int interval), which sends all

frames within a given interval starting at the current instant of time. It is called after

every task execution with an interval equal to the WCET of the previously executed

task, so that frames scheduled to be sent while the dispatcher is executing tasks are

processed correctly. After all dispatch tables have been processed, the send function

is called again with the interval that is still left in the step period in order to send all

frames remaining in this step period. tdl_comm_sendFramesWithinInterval is the

only TDL Comm Layer function that is called by the TDL Machine. The calls are

activated during compilation by the TDL_DISTRIBUTED flag using C macros.

TDL Runtime System 45

3.2. Synchronization Mechanism for Asynchronous Activities

This section presents a generic synchronization mechanism for the integration of

time-triggered (alias synchronous) and event-triggered (alias asynchronous)

activities. If such activities exchange information among each other, the data flow

must be synchronized such that reading unfinished output data is avoided. We

present a lock-free solution for these synchronization issues that is based exclusively

on memory load and store operations and therefore can be implemented efficiently

on embedded systems, as these operations are provided by every CPU in hardware.

Consequently, our approach does not need any operating system support such as

monitors [23] or semaphores [24] and thereby avoids dynamic memory operations

and the danger of deadlocks and priority inversions. There is also no need for

switching off interrupts and the solution also works in a shared-memory

multiprocessor system where the time-triggered and event-triggered activities are

performed on separate CPUs. Our approach keeps the impact of event-triggered

activities on the timing of time-triggered activities as low as possible. For more

information on non-blocking synchronization techniques refer to [25] and [26].

We already motivated and described the integration of asynchronous activities in the

TDL language in section 2.5. Throughout this section, we show the application of our

synchronization algorithm in the context of the TDL Async Handler, which is part of

the TDL Runtime System and is implemented in the files tdl_async.c and

tdl_async.h. Furthermore, we describe required extensions to the TDL Machine.

How outputs of asynchronous activities are communicated to other nodes of a

distributed system is presented in section 3.3, which is on the TDL Comm Layer

framework. Aspects which are specific to the target platform, such as the realization

of the background execution of asynchronous activities and the integration of

hardware interrupts, are discussed in chapter 1.

It is important to note that our lock-free synchronization approach is not focused

entirely on TDL, but rather uses the TDL language as an example for a language

supporting the integration of synchronous and asynchronous activities. It can also be

applied to other time-triggered systems that need to be extended with asynchronous

activities. A generic description of the approach has been published in [27].

3.2.1. Asynchronous Activities

We assume that time-triggered activities have the highest priority in a dependable

real-time system. The runtime system executes a pre-computed schedule and reads

inputs and writes outputs at well-defined time instants, which are synchronized with

a global time base such as the clock of a time-triggered bus system. There is always

a distinguished time base which drives all time-triggered activities and that is why

they are also called synchronous activities.

Asynchronous activities must not interfere with the timing properties of synchronous

activities. This is achieved by running asynchronous activities in a thread with lower

priority than synchronous activities. However, things get more complicated when

synchronization of the data flow is involved, as we describe below.

TDL supports three kinds of synchronous activities. Task invocations and actuator

updates also give sense when triggered asynchronously and should therefore be

supported. Mode switches however affect the time-triggered operation of a module

and are therefore not supported as asynchronous activities.

46 TDL Runtime System

An asynchronous task invocation consists of (1) reading input data (also called input

ports), (2) execution of the task's body, and (3) writing of output data (also called

output ports). There may be other asynchronous activities as well (e.g. setting of

actuator ports) but with respect to synchronization issues, they do not introduce new

problems because they can be seen as a special case of a task invocation. Figure 11

shows the task model that we assume.

The execution of a task's body is independent of the environment if input reading

and output writing are separated from the implementation. Therefore we assume

that internal copies of all input and output ports are maintained by the system. The

task's body operates exclusively on these internal port copies.

Reading of input data may involve a sequence of memory copy operations that could

be preempted by a hardware interrupt or by a time-triggered operation, which has

higher priority. Therefore we need to synchronize input data reading with the rest of

the system such that all input ports are read atomically.

Like input data reading, writing of output data is a sequence of memory copy

operations that could be preempted by a hardware interrupt or by a time-triggered

operation. It needs to be synchronized with the rest of the system such that all

output ports are updated atomically.

Triggers for asynchronous activities

Asynchronous activities may be triggered by different events. We have identified the

following three kinds of trigger events, which are consequently supported in our

extension of TDL:

 Hardware interrupt

A (non-maskable) hardware interrupt has the highest priority in the system

and may thus even interrupt synchronous activities. We must therefore take

care that the impact of hardware interrupts on the timing of synchronous

activities is minimized. Hardware interrupts may be used e.g. for connecting

the system with asynchronous input devices.

 Asynchronous timer

A periodic or a single-shot asynchronous timer may be used as a trigger. Such

a timer is independent from the timer that drives the synchronous activities

because it introduces its own time base. An asynchronous timer may for

example be used as a watchdog for monitoring the execution of the time-

triggered operations.

 Port update

Updating an output port may be considered an event that triggers an

asynchronous activity. We assume that both a synchronous and an

asynchronous port update may be used as a trigger event. In case of a

1.
read

2.
execute

3.
write

internal port copy data flow

Figure 11. Assumed task model

TDL Runtime System 47

synchronous port update, i.e. a port update performed in a time-triggered

activity, we must take care that the impact on the timing of the synchronous

activities is minimized. Port update events may e.g. be used for limit

monitoring or for change notifications.

Semantics of asynchronous activities

Obviously, the triggering of an asynchronous activity must be decoupled from its

execution. In addition, reading input ports for an asynchronous activity must be done

at the time of execution, not at the time of triggering. Thereby we move as much

work as possible into the asynchronous part and minimize the impact of trigger

events on the timing of synchronous activities, which is particularly important for

hardware interrupts and synchronous port updates.

If multiple different asynchronous activities are triggered, the question arises

whether they should be executed in parallel or sequentially in a single thread. We

opted for the sequential case because (1) on some embedded systems there is no

support for preemptive task scheduling and (2) because data flow synchronization is

simplified when only one asynchronous activity is executed at a time. In practice, we

expect this not to be a severe restriction because time critical tasks will be placed in

the synchronous part anyway.

We assume that asynchronous activities that are registered for execution may have

different priorities assigned. The set of registered events thus forms a priority queue

where the next activity to be processed is the one with the highest priority.

If one and the same asynchronous activity is triggered multiple times before its

execution, the question arises if it should be executed only once or multiple times,

i.e. once per trigger event. We opted for executing it only once because this avoids

the danger of creating an arbitrary large backlog of pending activities at runtime if

the CPU cannot handle the workload. In addition, this decision also simplifies the

mechanism for registering trigger events as will be shown later.

The following list summarizes our design decisions which are key to a simple and

efficient synchronization solution:

 Triggering of an asynchronous activity is decoupled from its execution.

 Reading input ports for an asynchronous activity is done at the time of

execution, not at the time of triggering.

 Asynchronous activities are executed sequentially.

 The execution order of asynchronous activities is based on priorities.

 If one and the same asynchronous activity is triggered multiple times before its

execution, it is executed only once.

3.2.2. Threading and Synchronization

Figure 12 outlines the threads involved including their priority and the critical

regions. The time-triggered activities are represented by the TDL Machine thread.

This thread may need further internal threads but we assume that all synchronization

issues are concentrated in a single thread that coordinates the time-triggered

activities. It should also be noted that an asynchronous timer thread could also run

at a lower priority as long as it is higher than the priority of the asynchronous

activities.

48 TDL Runtime System

The following situations that need synchronization can be identified and will be

described below in more details: (1) Access to the priority queue of registered

events. (2) Reading the input ports for an asynchronous activity. This must not be

interrupted by the TDL Machine. (3) Updating the output ports of an asynchronous

activity. This must be finished before the TDL Machine uses the ports.

The Priority Queue of Registered Events

As mentioned before, asynchronous events are not executed immediately when the

associated trigger fires but need to be queued for later execution by the background

thread. Since asynchronous events may be associated with a priority, we need a data

structure that allows us to register an event and to remove the event with the

highest priority. Such a data structure is commonly referred to as a priority queue. It

provides two operations enqueue and dequeue, which insert and remove an entry

with the property that the element being removed has the highest priority. A number

of algorithms exists for implementing priority queues with logarithmic behavior of the

enqueue and dequeue operation. However, in our case it is more important to

minimize the run time of enqueue in order to minimize its impact on the timing of

synchronous activities.

Elements are enqueued when an asynchronous event occurs and the event is not yet

in the queue. As mentioned earlier, an event can be a hardware interrupt, an

asynchronous timer event, or a port update event. Port updates may origin from an

asynchronous task or from a synchronous task that is executed by the TDL Machine.

enqueue will never be preempted by dequeue, however, enqueue may be preempted

by another enqueue operation.

on port update

hardware interrupts,

async. timer: highest priority

synchronous activities

(TDL Machine): high priority

asynchronous activities (back-

ground thread): lowest priority

registered events

enqueue()

dequeue()

on port update

ports

 critical region thread data flow

on interrupt, on timer

Figure 12. Threads and critical regions

TDL Runtime System 49

Elements are dequeued by the single background thread that executes asynchronous

activities. This thread may be preempted by interrupts and by the TDL Machine.

Thus, dequeue may be preempted by enqueue operations.

Trigger event Priority Pending

0 0 true

1 2 false

2 2 false

3 1 true

Table 2. Array representation of trigger events

As shown in the example in Table 2, we chose an array representation of the

triggerable events because this is both thread safe and provides for a fast and

constant time enqueue operation. We use a Boolean flag per event that signals if an

event is pending. The flag is cleared when an event is dequeued. From that time on

it may be set again when the associated trigger fires. The flag remains set when the

same trigger fires again while the flag is already set. The thread-safe enqueue

operation boils down to a single assignment statement and the dequeue operation

becomes a linear search for the event with the highest priority over all pending

events. Registering an event from a non-maskable interrupt or from a synchronous

port update thereby has only a negligible effect on the timing behavior of

synchronous activities. The linear search in the background thread is expected to be

acceptable for small to medium numbers of asynchronous events (< 100), which

should cover all situations that appear in practice. We chose this priority queue

implementation to achieve the fastest possible run time of the enqueue operation,

which is executed inside time-critical code, and because the performance of the

dequeue operation is secondary as it is executed inside the background thread.

It should be noted that the array representation of the priority queue does not

impose any restriction on the number of events the system can handle. There is one

array element for every trigger and the number of triggers is known statically. Thus,

the array can always be defined with the appropriate size.

The TDL Async Handler implements the priority queue by means of the following C

structure:

typedef struct {

 char pending; //flag indicating pending async sequence

 int priority; //priority of the async sequence

} tdl_async_AsyncSequence;

Upon initialization, a pointer to the array of asynchronous sequences and the number

of entries are passed to the TDL Async Handler:

void tdl_async_init(tdl_async_AsyncSequence* asyncs, int nofAsyncs);

The initialization function is called in the TDL main file, where also the array of

asynchronous sequences, i.e. the priority queue, is constructed and the priority for

every sequence is set. A sample initialization with the data from Table 2 looks like

this:

static tdl_async_AsyncSequence asyncs[] = {

50 TDL Runtime System

 {0, 0}, //{pending, priority}

 {0, 2}, //{pending, priority}

 {0, 2}, //{pending, priority}

 {0, 1}, //{pending, priority}

};

tdl_async_init(asyncs, 4);

Apart from the initialization function, the TDL Async Handler provides two functions

for enqueue and dequeue:

void tdl_async_enqueue(int index);

int tdl_async_dequeue(void);

The dequeue operation returns the index of the pending event with the highest

priority and removes it from the priority queue. It returns -1 when no events are

pending.

The background thread for executing asynchronous operations could for example be

a simple infinite loop that runs with lower priority than the TDL Machine thread and is

defined in the TDL main file. For a particular target platform there may be some

refinements with respect to the CPU load, which is increased to 100% by

permanently polling the event queue.

while(1) {

 int next = tdl_async_dequeue();

 if (next >= 0) {

 executeAsyncSequence(next);

 }

}

The procedure executeAsyncSequence is supposed to execute the asynchronous

activity identified by next. Within its implementation there will be synchronization

issues with respect to reading input ports and writing output ports as described

below. In the following, we will show all aspects of our implementation relevant to

these synchronization issues.

Reading the Input Ports for an Asynchronous Task

While performing asynchronous reading of input ports the following situation may

arise: An asynchronous input port reading involving multiple input ports (or at least

multiple memory load operations) has been started. The first port has been copied.

The second port has not yet been copied but the TDL Machine preempts the

background thread and updates the source ports. When the background thread

continues it would read the next port, which has a newer value than the first port.

Moreover, this situation may in principle occur multiple times when the TDL Machine

preempts the background thread after the second port has been read, etc. We have

to make sure that reading all of the input ports is not preempted by the TDL

Machine. Since asynchronous activities don't preempt each other, we know that there

can only be one such asynchronous input port reading that is being preempted.

Therefore we can introduce a global flag that is set by the TDL Machine in order to

indicate to the background thread that it has been preempted. The background

thread then has to repeat its reading until all of the ports are read without any

preemption. The following code fragments outline our C implementation.

Asynchronous port reading within executeAsyncSequence uses a loop in order to

wait for a situation where input port reading is not preempted by the TDL Machine.

Therefore, our solution does not qualify as a wait-free non-blocking algorithm [25]. It

should be noted, however, that (1) starvation cannot occur in the TDL Machine and

(2) in practice it does also not occur in the background thread because even in the

TDL Runtime System 51

unlikely case that the TDL Machine's schedule reserves 100% of the CPU, this refers

to the worst case execution time, which typically will not always be required.

do {

 tdl_machine_executed = 0;

 //copy input ports

 ...

} while (tdl_machine_executed);

The relevant TDL Machine code, which is placed in the central procedure of the TDL

Machine (tdl_machine_step) looks like this:

void tdl_machine_step(void) {

 tdl_machine_executed = 1;

 //perform operations for this time instant

 ...

}

Consequently, the flag is added as an external variable in the TDL Machine header

file tdl_machine.h, so that it is accessible by the background thread:

extern char tdl_machine_executed;

Updating the Output Ports of an Asynchronous Task

In the case of asynchronous output port updates the following situation may arise:

An asynchronous output port update involving multiple output ports (or at least

multiple memory store operations) has been started. The first port has been copied.

The second port is not yet copied but the TDL Machine preempts the background

thread and reads both output ports. Now one port is updated but the second is not.

Since this interruption cannot be avoided, we must find a way for proper

synchronization.

Since we assumed earlier that updating the output ports is separated from the

implementation of a task, we can encapsulate the output port update operations of a

task in a helper procedure that we call the task's termination driver. Since

asynchronous activities don't preempt each other, we know that there can only be

one such termination driver being preempted and it suffices to make that very

instance available to the TDL Machine by means of a global variable. Whenever the

TDL Machine performs its next step, it checks first if a termination driver has been

interrupted. If so, it simply re-executes this driver! This means that the driver may

be executed twice, once by the background thread and once by the TDL Machine.

This is only possible if the driver is idempotent and reentrant, i.e. its preemption and

repeated execution does not change its result. Fortunately, termination drivers have

exactly this property because they do nothing but memory copy operations and the

source values are not modified between the repeated driver executions. The source

values are the internally available results of the most recent invocation of this

asynchronous task and only a new task invocation can change them. Such a task

invocation, however, will not happen because the background thread executes all

asynchronous activities sequentially.

It should be noted that the property of idempotency does not hold for copying input

ports as discussed in the previous subsection because a preemption by the TDL

Machine may alter the value of a source port that has already been copied. This

means that we need two ways of synchronization for the two cases.

It should also be noted that setting the termination driver identity must be an atomic

memory store operation. If storing e.g. a 32 bit integer is not atomic on a 16-bit

CPU, an additional Boolean flag can be used for indicating to the TDL Machine that a

driver has been assigned. This flag must be set after the assignment of the driver's

52 TDL Runtime System

identity. If this initial sequence of assignments is preempted, the TDL Machine will

not re-execute the driver and that is correct because the driver has not yet started

any memory copy operations.

The following C code outlines the implementation of asynchronous task termination

drivers and the corresponding code in the TDL Machine. Setting, testing and clearing

the driver identity may vary between target platforms. Our implementation uses a

function pointer to the drivers of a module (tdl_machine_asyncDrivers), an ID

(tdl_machine_asyncDriverID) to identify a specific termination driver and a flag

(tdl_machine_asyncPending) indicating a pending termination driver. This requires

the following external variables in tdl_machine.h:

extern char tdl_machine_asyncPending;

extern int tdl_machine_asyncDriverID;

extern void (*tdl_machine_asyncDrivers)(int);

An example task termination driver of a specific TDL module with index T may look

like this:

void module_drivers(int id) {

 switch (id) {

 ...

 case T: //termination driver for async task T

 tdl_machine_asyncDriverID = T;

 tdl_machine_asyncDrivers = module_drivers;

 tdl_machine_asyncPending = 1;

 //perform memory copy operations

 ...

 tdl_machine_asyncPending = 0;

 break;

 ...

 }

}

The relevant TDL Machine code tests if a driver is pending and executes it if

necessary. Including the tdl_machine_executed flag introduced previously the code

looks like this:

void tdl_machine_step(void) {

 tdl_machine_executed = 1;

 if (tdl_machine_asyncPending) {

 tdl_machine_asyncDrivers(tdl_machine_asyncDriverID);

 }

 //perform operations for this time instant

 ...

}

It suffices to clear the flag indication a pending termination driver at the end of the

termination driver itself. There is no need to do it after

tdl_machine_asyncDrivers() in tdl_machine_step because the driver's re-

execution will clear it anyway.

The resulting runtime overhead for supporting asynchronous operations in the TDL

Machine is the assignment of the tdl_machine_executed flag and the test for the

existence of a preempted asynchronous task termination driver, which is acceptable

because this happens only once per TDL Machine step. In case of preempting such a

driver the time for re-execution must be added. When a port update trigger is used,

then the enqueue operation is also a small constant time overhead that affects the

TDL Machine. There is no other runtime overhead for integration of event-triggered

activities in the TDL Machine.

TDL Runtime System 53

3.2.3. Quantitative Analysis of Runtime Behavior

In order to show the feasibility of the proposed synchronization mechanism, we

analyzed its runtime behavior on four different platforms. The measurements were

conducted using a CPU timer to count clock cycles and by setting a digital output to

high during an operation and measuring the duration with a digital oscilloscope.

Table 3 shows the results for various operations. The platform named MicroAutoBox

uses a PowerPC 750FX CPU running at 800 MHz and the Microtec C compiler version

3.2 with optimization level 5. The platform runs the dSPACE Real-Time Kernel as its

operating system. The SHARC platform uses an Analog Devices SHARC ADSP-21262

CPU running at 200 MHz and the VisualDSP++ C compiler version 5.0 with maximum

optimization level. The platform named ARM uses an ARM7 TDMI CPU running at 80

MHz and the GNU C compiler with optimization level 2 and runs without an operating

system. The platform named RENESAS uses a Renesas M32C/85 CPU running at 24

MHz and the GNU C compiler version 4.1 with optimization level 3. The platform runs

the Application Execution System (AES) provided by DECOMSYS and executes the

programs from read-only memory, which slows down the execution. This system

does not support external interrupts for user level programs.

Platform (MHz) Interrupt Port Update dequeue N

MicroAutoBox (800) 420 8 11 * N + 60

SHARC (200) 1030 72 30 * N + 110

ARM (80) 700 200 287 * N + 500

RENESAS (24) N.A. 1200 790 * N + 2500

Table 3. Measurement results [nanoseconds]

The column Interrupt shows the time needed for an external hardware interrupt

trigger, which includes the interrupt handling overhead and the enqueue operation.

The column Port Update shows the time needed for a synchronous port update

trigger, which consists only of the enqueue operation. The column dequeue N shows

the time needed for the search for the next event to be processed as a linear

function of the array size N. All timings are given in nanoseconds.

The values shown in the columns Interrupt and Port Update are critical for the timely

execution of synchronous operations as they impose an overhead that may affect the

TDL Machine. Even on the slowest platform the required time is only slightly above

one microsecond. In comparison with the ARM platform, the Interrupt time for

MicroAutoBox shows that the operating system introduces a significant overhead.

The values in the column dequeue N only affect the background thread and are not

visible to the TDL Machine. On the slowest platform a time of 81.5 microseconds

results for N = 100, which means that response times in the range of milliseconds

can easily be achieved for asynchronous operations. With regard to the CPU clock

speed, the SHARC platform has the best performance for the dequeue operation.

This is due to the compiler which efficiently optimizes loops for parallel execution.

3.2.4. Related Work

The xGiotto language [4] also aims at the integration of time-triggered and event-

triggered activities. Its compiler is supposed to perform a static check for the

absence of race conditions, which occur when a port is updated multiple times at the

54 TDL Runtime System

same logical time instant. Due to the specific design of xGiotto, a precise check is

possible, but not in polynomial time. Therefore, only a conservative check is done in

the compiler. We do not need such a check at all as we defined appropriate

semantics for event-triggered activities and use appropriate synchronization

mechanisms for their integration into a time-triggered system. Furthermore, the

schedulability analysis is also expensive in xGiotto as it involves solving a two-player

safety game. For TDL programs the check is only slightly more complicated (due to

slot selection) than for Giotto, for which it can be done by a simple utilization test in

polynomial time [28]. Note that asynchronous activities are not taken into account in

this test, and need not be taken into account, as TDL provides no guarantees for

their execution.

RT-Linux [29] is an extension of the Linux operation system which adds a high

priority real-time kernel task and runs a conventional Linux kernel as a low priority

task. Its interrupt handling mechanism is similar to what we propose for the event

queue as all interrupts are initially handled by the real-time kernel and are passed to

a Linux task only when there are no real-time tasks to be run. Our approach is

analogous, as the only immediate reaction to an interrupt is its registration in the

priority queue so that it can be processed later when no time-triggered activity is

executed.

In [30] a non-blocking write (NBW) protocol is presented. The writer is executed by a

separate processor and is not blocked. It updates a concurrency control field (CCF)

which indicates whether it currently writes data to a shared variable. The reader uses

the CCF to loop until no write operation is executed while it reads from the shared

data structure. This relates closely to our synchronization strategy for reading input

ports for an asynchronous activity. In our case the writer would be the TDL Machine

which is not blocked.

A comprehensive overview of the field of non-blocking synchronization can be found

in [26]. Among other techniques, it also describes a so-called roll-forward

synchronization approach by means of a helper function, which looks similar to the

one we used for synchronizing output port writing.

3.3. TDL Comm Layer Framework

The TDL Comm Layer framework is responsible for the transparent distribution of

port values across the communication system of a distributed TDL system. It

provides functions for time synchronization, for reading and writing messages to

frames and for sending and receiving frames on a communication bus. The Comm

Layer is divided into a generic part, which is implemented in the file tdl_comm.c and

the corresponding header file tdl_comm.h, and communication platform-specific

plug-ins, implemented in the files tdl_comm_<platform>.c and

tdl_comm_<platform>.h. Note that the platform-specific functionality is not only

specific to a concrete communication bus, e.g. FlexRay, but also to a concrete

hardware platform, as typically different communication drivers and controllers are

used.

As already laid out in section 2.3 on transparent distribution, the basic idea for

communication in LET-based systems such as TDL is to transfer values inside the LET

of the sender task. The TDL Runtime System implements this by means of a so-

called stop driver, which is executed after task termination and interfaces with the

TDL Comm Layer. On the receiver node, we use the concept of a stub module. It acts

as a local representation of a module which is executed on another node. Stub

modules can be seen as primitive modules which only consist of ports and a simple

E-Code which solely executes termination drivers. The TDL Comm Layer ensures that

TDL Runtime System 55

transmitted port values are copied to internal task output ports of the stub module.

Afterwards, the appropriate termination drivers are executed so that the public task

output ports are updated and then made available to other modules according to the

LET semantics, i.e. at the end of the LET of the task which produced the ports on the

remote node. Figure 13 illustrates how a stub module handles the data flow between

the Sender and Receiver modules from the producer-consumer example we

introduced in section 2.2.

To illustrate how the TDL Comm Layer framework handles the transmission of port

values, we take yet another look at the producer-consumer example. In the

following, we describe step by step what happens when the public output port o of

the Sender module is transferred from Node1 to the Receiver module on Node2.

Figure 14 is a zoomed version of Figure 4, including annotations of when the steps

listed below occur. The list presents an overview of the TDL Comm Layer functions

involved, which we describe in detail throughout this section.

1) The task produce that produces output port o is executed by the TDL Runtime

System on Node1, on which the module Sender is executed. Its physical

execution time is indicated by the black box in Figure 14.

2) At the end of task execution, the task stores its output in an internal task

output port, which we call ointernal. Upon task termination, the stop driver is

executed. It puts all output ports of a task into a TDL frame buffer, together

with a tag identifying the module, mode, and task invocation it came from. In

our case, the internal port ointernal and a corresponding tag is written to the

frame buffer via the functions tdl_comm_putTag and tdl_comm_putInt.

3) The buffered frame is sent via the communication network by using the TDL

Comm Layer plug-in function tdl_comm_sendBuffer. This is triggered by the

TDL Machine dispatcher (see section 3.1.3) on Node1 by calling

tdl_comm_sendFramesWithinInterval, which triggers the sending of all

frames scheduled within a specific time interval. The function must be is

called in time, i.e. before the corresponding frame is scheduled to be sent on

the network.

4) The function tdl_comm_sendBuffer calls the communication platform-specific

function which actually sends the content of the frame buffer via the

communication network. As a result, the frame is transferred via the network.

Figure 13. Stub module data flow

Node2 Node1

Sender

module

Sender

stub module

Receiver

module

network connection
logical data flow

physical data flow

56 TDL Runtime System

5) On Node2 the frame is received by tdl_comm_receiveFrames right before

another step of the TDL Machine is executed. This function in turn calls the

platform-specific function tdl_comm_receiveBuffer, which fills the

corresponding buffer with data received from the communication bus. Upon

reception, tdl_comm_receiveFrames calls the message decoding function

(decodeMessage, part of the generated glue code in the TDL main file) with

the tag and the frame as parameters. The decoding function writes all ports

contained in a message to the internal ports of the stub module. In our

example, the transmitted port value is written to port ointernal of the Sender

stub module by using tdl_comm_getInt.

6) The TDL Machine on Node2 executes the termination driver in the E-Code of

the Sender stub module, which copies ointernal to the corresponding public

output port o. This happens at the same point in time as the execution of the

termination driver on Node1. As a consequence, port o is available to other

modules at the end of task produce's LET, regardless of where the modules

are located. This fact exhibits the notion of transparent distribution.

Note that our implementation requires the TDL Machine to execute the stub modules

with the same period as the original module. On the node that executes the stub

module, this might shorten the step period of the TDL Machine, which is calculated as

the greatest common divisor (GCD) of all periods of all actions the TDL Machine has

to perform. In case of using the non-preemptive scheduler described in section 3.1.3,

this results in a tighter constraint for the maximum worst-case execution time

(WCET) of tasks on this node, as the WCET must not exceed the TDL Machine's step

period to achieve a schedulable system.

t Sender Sender produce produce

Receiver Receiver consume

LET 10 ms

LET 5 ms

Node1

Node2

communication

window

local
buffer

communication
bus

1) 2)

3)

5)

local
buffer

4)

6)

Figure 14. Transmission of a port value via the network

TDL Runtime System 57

Communication Buffers

To increase the portability of the TDL Comm Layer framework, we introduced an

abstraction which uses individual buffers for every communication frame. The generic

part of the TDL Comm Layer packs and unpacks TDL ports to those buffers. This is

done by adding a message tag to every set of ports originating from a task

invocation so that the receiver can identify by which task in which mode and by

which module it was produced. The message tag is part of a mechanism we call

dynamic multiplexing. It allows the creation of a static schedule for TDL systems

whose modules are able to change modes dynamically and independently (see

section 4.3.1). The transmission and reception of the communication buffers via a

concrete communication protocol is handled by platform-specific plug-ins to the

framework. Figure 15 illustrates how the communication buffers are used along with

the names of the corresponding TDL Comm Layer functions used to access them.

The C implementation of the communication buffers consists of an array of pointers

to character arrays of variable lengths, which conserves space by using only the

required number of bytes for each buffer. The buffers are initialized in the TDL main

file and are therefore declared as external.

extern tdl_char* tdl_comm_buffers[];

3.3.1. Initialization

The TDL Comm Layer framework is initialized by the following function:

void tdl_comm_init(tdl_comm_Config* config);

The config struct contains the following data structures:

typedef struct {

 long int stepPeriod; //step period of the node

 long int busPeriod; //bus period of the cluster

 tdl_comm_Frame* frames; //array of frames

 int nofFrames; //number of frames

 char tagSize; //size of the message tag

 tdl_comm_FrameEntry* frameSendEntries; //pointer to array of frame

 //send entries

tdl_comm_put[TDLType]()

tdl_comm_get[TDLType]()

tdl_comm_sendBuffer()

tdl_comm_receiveBuffer()

TDL Comm Layer frame buffers

Communication protocol

TDL Ports with tags

Figure 15. TDL Comm Layer frame buffers

58 TDL Runtime System

 tdl_comm_FrameEntry* frameReceiveEntries; //pointer to array of

 //frame receive entries

 void (*decodeMessage)(int, tdl_comm_Frame); //function pointer to

 //message decoder funct.

} tdl_comm_Config;

The initialization function keeps a local copy of the configuration pointer and assigns

the correct tag function according to the tag size in the configuration structure, which

can either be 1 byte or 2 bytes.

A TDL frame is represented by a struct containing the index of the buffer for the

frame data, the size of the frame and the current position required for writing

messages to a frame and reading data from a frame:

typedef struct {

 int bufferIndex; //index of the buffer of the frame

 int tdlFrameSize; //frame size in bytes

 int position; //current position in the frame buffer

} tdl_comm_FrameStruct;

typedef tdl_comm_FrameStruct* tdl_comm_Frame;

A frame entry, used for both the list of sent frames and the list of received frames,

contains a frame index and a time when the frame is sent:

typedef struct {

 int frame; //frame index

 long int time; //latest time when frame must be sent

} tdl_comm_FrameEntry;

The message decoder function decodeMessage has a tag as first argument and a TDL

frame as second argument. It handles the content of a frame according to the tag

provided, i.e. it updates the internal ports of the corresponding stub module and also

sets the mode of the stub module.

3.3.2. Frame Handling

This section describes the relevant function for frame access, packing and unpacking

of messages to frames and transmission and reception of frames.

Frame Access

tdl_comm_Frame tdl_comm_getFrame(int index);

tdl_comm_getFrame is used to obtain a reference to a frame using its index. This

function is needed for example because tdl_comm_FrameEntry only contains frame

indexes but not references directly. Also other data structures in the runtime system

or the generated glue code refer to frames using the frame index.

Put and Get of TDL types

void tdl_comm_put<TDLType>(tdl_comm_Frame frame, tdl_<TDLType> data);

void tdl_comm_get<TDLType>(tdl_comm_Frame frame, tdl_<TDLType>* data);

For every TDL type, which are boolean, char, byte, short, int, long, float, and

double, there are corresponding put and get methods. The data is read or written to

the current position of the frame and subsequently the position is increased by the

size of the data type. With the get functions a pointer is passed indicating where to

store the obtained data.

TDL Runtime System 59

The endianness of the system is tested upon initialization at runtime and is then

taken into account when packing messages into frames, so that the content of

frames sent over the network is always in big endian form. This ensures that systems

can communicate regardless of their endianness.

In order to support reading and writing of structured types, the generated module

glue code contains code that reads and writes those types by breaking them up into

primitive TDL types and calling the appropriate sequence of read and write

operations.

Tag Handling

void (*tdl_comm_putTag)(tdl_comm_Frame frame, int tag);

tdl_comm_putTag writes a tag to the current position of the frame passed as

argument. The function is actually a function pointer which is set to the correct

function according to the tag size specified upon initialization.

There also exists a corresponding getTag function, but it is not visible outside the

TDL Comm Layer as it is only called internally by tdl_comm_receiveFrames.

Sending and Receiving Frames

void tdl_comm_sendFramesWithinInterval(long int interval);

tdl_comm_sendFramesWithinInterval sends all frames contained in the

frameSendEntries list that are within the interval passed. The function maintains a

current time relative to the start of the bus period. This time is increased by the

passed interval and reset when the end of the bus period is reached. The function is

called during tdl_machine_step (see 3.1.2).

void tdl_comm_receiveFrames(void);

tdl_comm_receiveFrames receives all frames within one step period according to the

frameReceiveEntries list. It is called just before the invocation of the TDL Machine.

This function calls the decodeMessage function passed during initialization, which

stores all ports contained in the message in the appropriate internal ports of the stub

modules.

3.3.3. Communication between Asynchronous Activities

When asynchronous tasks provide output ports to other synchronous or

asynchronous activities located on another node of a distributed system, these ports

must be communicated via a communication network. We call the network frames

carrying those ports asynchronous frames. Note that if asynchronous activities use

input ports provided by synchronous tasks, no asynchronous frames are necessary.

In such a case, communication is done within the LET of the task which updates the

corresponding port in the same way as when two synchronous tasks communicate

with each other.

In analogy to handling the execution of asynchronous activities in a background

thread, asynchronous frames must be sent in a way so that they do not interfere

with synchronous frames, i.e. data sent by synchronous activities. Depending on the

communication protocol used, this can be done by configuring them as low priority

frames (typically done when using event-triggered protocol which often support

priorities such as CAN) or by assigning them a designated section in the

communication cycle (typically done when using time-triggered protocols such as

FlexRay or TTEthernet).

60 TDL Runtime System

The notion of transparent distribution does not apply to the parts of a TDL system

involving asynchronous activities. Other than for synchronous activities, it is not

guaranteed that asynchronous updates for ports and actuators are performed at the

same point in time throughout a distributed system. Asynchronous ports are

immediately available to modules mapped to the same node but only after network

transmission has finished on remote nodes. Consequently, the fact that distribution

might alter parts of the behavior of the system must be taken into consideration at

design time.

There are no specific TDL Comm Layer functions for asynchronous frames. They are

handled with the same functions as synchronous frames, with the exception that

they are not included in the tdl_comm_FrameEntry frame lists as their transmission

time is only known at runtime. Consequently, the functions which rely on these lists,

which are tdl_comm_sendFramesWithinInterval and tdl_comm_receiveFrames,

cannot be used. Instead, this functionality is implemented directly in the generated

glue code by using the put and get functions to interface with the frame buffers and

the functions to send and receive the buffers. Note that as there are separate frame

data structures for each synchronous and asynchronous frame, the sharing of the put

and get functions does not create any data synchronization issues.

As an example, here is how an asynchronous frame is sent in the start driver of an

asynchronous task invocation. First, the driver executes the task functionality code

and then it puts the task's internal output port into a frame buffer which is finally

sent.

case 0: //start driver for async task Sender.produce

 //execute task functionality code

 Sender_produceImpl(&Sender_produce_o_internal);

 {

 tdl_comm_Frame frame = tdl_comm_getFrame(0);

 frame->position=0;

 //copy internal task port to the frame buffer

 tdl_comm_putInt(frame, Sender_produce_o_internal);

 tdl_comm_sendBuffer(frame->bufferIndex, frame->tdlFrameSize);

 }

break;

On the receiving node, the following function is generated in the TDL main file and

called after the reception of synchronous frames before the TDL Machine step is

executed. After receiving the buffer, the task's internal port is extracted and finally

the termination driver copies it to the public output port of the stub module.

static void receiveAsyncFrames(void) {

 {

 tdl_comm_Frame frame = tdl_comm_getFrame(0);

 frame->position=0;

 tdl_comm_receiveBuffer(frame->bufferIndex, frame->tdlFrameSize);

 //obtain internal task port from the frame buffer

 tdl_comm_getInt(frame, &Sender_produce_o_internal);

 Sender__drivers(0); //call termination driver

 }

}

3.3.4. Platform-Specific Plug-Ins

The platform-specific functionality of the TDL Comm Layer framework is implemented

by means of plug-ins. They comprise functions which handle initialization, sending

and receiving frame buffers and time synchronization on a concrete hardware

platform. This section describes the plug-in interface.

TDL Runtime System 61

A concrete communication platform is initialized with the following function:

void tdl_comm_init_platform(void);

Sending and receiving a frame buffer is implemented by the following two functions:

void tdl_comm_receiveBuffer(int bufferIndex, int size);

void tdl_comm_sendBuffer(int bufferIndex, int size);

Both functions have parameters for which buffer to send/receive and how many

bytes to send/receive. The latter is used to send/receive the exact number of bytes

transmitted on the communication bus. For sending the corresponding position of

the frame struct is used and when receiving the expected size of the frame

associated with the buffer is used.

For synchronization of the time base of the communication bus with the time base of

individual nodes, a plug-in must provide additional functions. As the synchronization

algorithms vary considerably between different platforms, there are no function

prototypes in the generic tdl_comm.h header file. Instead, the prototypes must be

provided in the plug-in header file tdl_comm_<platform>.h, so that they can be

utilized in the generated glue code. Chapter 1 describes the implementation of

platform-specific TDL Comm Layer plug-ins for prototyping hardware using the

FlexRay communication bus.

4. Code and Schedule Generation Framework

This chapter presents a code and schedule generation framework for LET-based

systems. It uses TDL as an example language and thus generates glue code suitable

for the TDL Runtime System implemented in C as described in the previous chapter.

It thereby ensures the correct behavior of TDL modules on potentially distributed

platforms. LET-based components, i.e. TDL modules, serve as a unit of distribution

and run in parallel on one or more nodes. The LET abstraction and the resulting

property of transparent distribution lay the basis for efficient automatic code and

schedule generation, as the logical timing specification is used as input for the

software synthesis process. A manual mapping of LET-based components to target

platforms would be error-prone and not effective, as the behavior of the system is

already completely specified by the LET. This fact leaves little room for manual

optimizations, apart from such concerning CPU and memory utilization.

Consequently, the whole LET design flow relies on efficient and reliable automatic

platform mapping, i.e. on the generation of glue code, task and communication

schedules for all target platforms involved whereby the process enforces the LET-

based specification automatically.

For the purpose of code generation we developed a versatile framework which uses a

layered architecture making it flexible regarding support for additional platforms.

Note that the term platform is actually a generic term, ranging from the

programming language and operating system a concrete hardware platform uses to

its specific communication and input/output controllers. Our code generation

framework acknowledges this by the ability of subsequent refinements to the code

generation functionality. As the correctness of the platform mapping is essential for

applying a LET-based development process, our code generation framework

maximizes the reuse of code components to minimize the chance of programming

errors. A less detailed description of the framework has been published in [31].

Figure 16 presents an overview of how the different parts of the framework interact

with each other. The figure is vertically divided into a platform-independent and a

platform-dependent part and horizontally into a cluster and a node level part,

whereby the cluster part is only required for distributed systems. The numbers

indicate the order in which the depicted steps are performed. Code generation is

based on TDL modules and their deployment, specifying which component is

executed on which node. This information is used by the node plug-in to generate

the appropriate code that executes all modules mapped to a node. Node plug-ins are

split into a platform-independent generic part and a platform-dependent subclass

implementing a specific hardware target. The platform-independent Comm Scheduler

however needs the deployment information to generate a list of frames that must be

transferred between nodes. Each frame is assigned a timing window indicating when

it must be transferred via the network. The Comm Scheduler Plug-In is the platform

dependent part of the cluster level and is tailored to a specific communication

protocol. It schedules the frames obtained by the Comm Scheduler and assigns a

64 Code and Schedule Generation Framework

concrete timing to them which must be within their timing windows. It can query the

node plug-in by supplying it with a candidate set of frames with assigned timing to

check whether the nodes are schedulable with this set. If it is not schedulable the

Comm Scheduler Plug-In can come up with an alternative set leading to a feasible

node task schedule. This approach prevents that a communication schedule is

produced that eventually is not usable because of restrictions imposed by scheduling

constraints on node-level, such as CPU speed limitations. After a feasible schedule is

found, the Comm Scheduler stores it in a data structure called Comm Schedule which

is subsequently used by the node platform plug-ins to generate code.

The code which is dynamically generated by the framework consists of multiple

parts. Those parts are either specific to or depending on (1) the TDL code of

modules, (2) the concrete target platform, (3) the communication requirements

between TDL modules in a distributed system, or (4) the schedule for a concrete

communication protocol between nodes. Table 4 presents a classification of the

generated code listing typical examples of what kind of code is generated.

extends

Comm

Scheduler

TDL Modules &

Module

Deployment

Comm

Scheduler
Plug-In

Comm
Schedule

Generated
Code

Generic

Node Plug-
Ins

Specific

Node Plug-
Ins

cluster-level

node-level

platform-dependent platform-independent

1.

2. schedule frames

4. frame timing

3. check

schedulability

5.

6.

7.

Figure 16. Framework collaboration diagram

Code and Schedule Generation Framework 65

 Platform-independent Platform-dependent

Cluster level Generic module

communication requirements,

communication windows for

network frames

Communication schedule for a

concrete communication

protocol obeying frame window

constraints

Node level TDL Runtime System

configuration: Module glue

code, wrappers for drivers

and guards, E-Code

Task schedules, platform-

specific invocation of the TDL

Runtime System, I/O driver

assignment to TDL sensors and

actuators, make file

Table 4. Parts of the generated glue code

The alternative to pre-runtime code generation would be to do all processing on the

nodes itself at runtime. However, this would require numerous dynamic data

structures whose handling contradicts the computing power and the dependability

requirements of typical embedded systems. When distribution is involved it gets even

more complicated as information of the whole system is needed on every node

because the communication schedule must be coordinated globally.

A previous implementation of a runtime system for TDL and corresponding code

generation functionality uses a Platform Abstraction Layer (PAL) based on C functions

[7]. For every platform various functions must be implemented to adapt the runtime

system to a specific operating system. However, its design makes implicit

assumptions about what functionality an operating system provides and therefore it

is not possible to support certain platforms in a straight forward way. In contrast, our

approach shifts the platform abstraction to the level of code generation mechanisms

and thereby enables the adaptation to a significantly broader range of platforms. For

example, it is possible to support multiple programming languages while still reusing

parts of the code generation functionality.

Code generation for distributed systems based on Giotto, a predecessor of TDL, has

been proposed in [32]. The authors also use the basic idea of handling network

communication by scheduling messages within the LET period of its producers.

However, they employ a different workflow as they require that a system integrator

assigns CPU time and network bandwidth before individual components are designed.

The benefit of this strategy is that code can then be generated independently. In

contrast, our centralized code generation process allows more flexibility in case

components are added or changed during development as then the whole code

including the communication schedule is regenerated to accommodate for all changes

in the timing requirements.

Concerning the usage of the framework, typically a graphical front-end harnessing

our code generation framework supports the deployment of components to a

distributed system. Such a tool, as for example the TDL:VisualDistributor presented

in 2.6, also provides configuration options concerning the mapping of sensors and

actuators to concrete hardware devices and other hardware parameters.

This chapter covers our Java implementation of the framework foundations including

basic plug-ins for ANSI-C, whereas the next chapter describes plug-ins for concrete

node and communication platforms. In the following sections we first describe the

framework foundations and then the code generation mechanisms on the node and

cluster level.

66 Code and Schedule Generation Framework

4.1. Framework Foundations

This section introduces the basic framework elements, consisting of interfaces and

(abstract) classes. The framework foundations are not specific to a concrete

programming language or hardware platform. They are the root of the platform plug-

in class hierarchy which represents a plug-in architecture that can be extended for an

open set of target platforms on the node and cluster level. Common features for both

platform types include access to TDL modules and their deployment, unified handling

of platform options and a specified destination directory for storing the generated

code.

Figure 17. Framework foundation classes and interfaces

<<interface>>

Platform

<<interface>>

NodePlatform

AbstractPlatform

<<interface>>

ClusterPlatform

AbstractClusterPlatform AbstractNodePlatform

<<interface>>

CommLayer

<<interface>>

Scheduler

ModuleDecl

<<interface>>

CommSchedulerPlugin

AsyncDecl

CommSchedule

l

Code and Schedule Generation Framework 67

Figure 17 depicts a UML class diagram of the framework foundations (indicated by

the thick borders) including the most important interfaces and classes its elements

refer to. On top is the Platform interface which contains basic methods all node and

cluster plug-ins must implement, such as handling platform options, the destination

directory and the passing of TDL module objects. It uses ModuleDecl which

represents a module's Abstract Syntax Tree (AST) as supplied by the TDL compiler.

AbstractPlatform is an abstract class that implements the Platform interface and

provides default implementations which for example store the destination directory

and modules in its instance attributes. The NodePlatform and ClusterPlatform

interfaces extend the Platform interface by methods which node and cluster

platforms must implement. For that purpose, they use a CommLayer communication

layer, a task scheduler Scheduler, a communication scheduling plug-in

CommSchedulerPlugin and a communication schedule CommSchedule. Note that

NodePlatform also stores a reference to a ClusterPlatform. In addition to a

number of default implementations, AbstractNodePlatform also provides methods

and attributes for the processing of asynchronous activities. It uses the class

AsyncDecl which represents an asynchronous activity. Finally, the abstract class

AbstractClusterPlatform does not provide any functionality apart from providing a

base class for cluster platforms, which combines the AbstractPlatform class and

the ClusterPlatform interface.

In the following we will systematically describe the framework foundation classes and

interfaces including their attributes and methods in detail.

Interface Platform

The Platform interface (see Figure 18) must be implemented by all classes which

generate code, whether it is node or cluster-specific. The output of a platform plug-in

class should be written to files as expected by the target platform's implementation

of the TDL Runtime System. Platform classes may consume an arbitrary number of

custom options.

void setModules(List<ModuleDecl> modules)

This function sets the modules to be processed, where modules is a

list of abstract syntax trees (AST) of the modules. The AST

represents a single, compiled module of the system by an object of

the class ModuleDecl (see Figure 19), which is created by the TDL

compiler. It contains the complete information about a module,

including its E-Code, and provides methods to query its data

structures.

<<interface>>

Platform

setModules(modules: List<ModuleDecl>)

setDestDir(destDir: String)

getDestDir(): String

getName(): String

getValidOptions(): String

consumeOptions(options: String[], idx: int): int

emitCode()

Figure 18. Interface Platform

68 Code and Schedule Generation Framework

void

setDestDir(String destDir)

Sets the destination directory to be used for all output files a

platform plug-in generates.

String getDestDir()

Gets the destination directory.

String getName()

Returns the human-readable name of this platform class, which

typically is a detailed name of the target platform.

String getValidOptions()

This returns the valid options for the platform class with one option

per line which may also contain a short comment. If no information

about valid options is available, null should be returned. Examples

for platform options are a –debug flag enabling debug output or a –

node <nodeName> option which passes the name of a node to a plug-

in.

int consumeOptions(String[] options, int idx)

This method is called for setting plug-in specific options. A plug-in

may consume an arbitrary number of options inside the String array

options. The index idx indicates the first option that might be

consumed by the plug-in, whereas the value the function returns is

the index of the first option that does not belong to the given plug-in

class.

void emitCode()

This method generates the platform specific code for all modules set

by setModules(). It is called after all setters and

consumeOptions().

Table 5. Methods of interface Platform

Figure 19. Class ModuleDecl representing the Abstract Syntax Tree (AST)

+ name: String

+ isPublic: boolean

+ imports: ModuleDecl[]

+ ports: List<PortDecl>

+ asyncs: List<AsyncDecl>

+ syncTasks: Set<TaskDecl>

+ ecode: ECodeStruct

+ getConstantsAlphabetical(): ConstantDecl[]

+ getConstantsTextual(): ConstantDecl[]

+ getTypesAlphabetical(): TypeDecl[]

+ getTypesTextual(): TypeDecl[]

+ getPorts(): PortDecl[]

+ getTasks(): TaskDecl[]

+ getModes(): ModeDecl[]

ModuleDecl

Code and Schedule Generation Framework 69

Class AbstractPlatform

The abstract base class AbstractPlatform (see Figure 20) implements the Platform

interface and provides an empty plug-in, i.e. a plug-in that does not emit any files. It

provides straight-forward implementations for handling the destination directory and

the abstract syntax trees of modules.

The implemented functions setDestDir() and getDestDir() set and get the

destination directory which the class stores in the protected field destDir. The class

also implements the function setModules() which stores the module ASTs in the

field modules. A default implementation of getName() returns the name of the Java

class. Furthermore, an implementation of consumeOptions() does not consume any

arguments and therefore simply returns the supplied index. Consequently,

getValidOptions() returns null.

Interface NodePlatform

The NodePlatform interface (see Figure 21) must be implemented by a class in order

to generate platform-specific code on the node level of a potentially distributed

system. It serves to provide a task scheduler implementing the Scheduler interface.

In the distributed case, NodePlatform also provides a communication layer and

associates a node to a corresponding cluster platform. Single-node systems use a

dummy communication layer and null as cluster platform.

<<interface>>

NodePlatform

getScheduler(): Scheduler

isSchedulable(): boolean

setCommLayer(commLayer: CommLayer)

setClusterPlatform(clusterPlatform: clusterPlatform)

getClusterPlatform(): ClusterPlatform

Figure 20. Abstract class AbstractPlatform

Figure 21. Interface NodePlatform

AbstractPlatform

+ modules: List<ModuleDecl>

destDir: String

+ setModules(modules: List<ModuleDecl>)

+ setDestDir(destDir: String)

+ getDestDir(): String

+ getName(): String

+ getValidOptions(): String

+ consumeOptions(options: String[], idx: int): int

70 Code and Schedule Generation Framework

Scheduler getScheduler()

Returns the task scheduler to be used for this node

platform. It must conform to the Scheduler interface and

is used to schedule all tasks specified by the modules

assigned to a node.

public boolean isSchedulable()

This function is used to check if the task scheduler is able

to find a feasible schedule for the tasks to execute on a

node. For distributed systems it takes into account the

constraints of the communication system, e.g. the

deadline of messages containing a task's ports.

void setClusterPlatform(ClusterPlatform clusterPlatform)

Sets the cluster platform plug-in object which represents

the communication system a node is connected to in a

distributed system. Its main purpose is to create a global

communication schedule. If no cluster platform plug-in is

set, this node is considered to be a stand-alone node.

ClusterPlatform getClusterPlatform()

Gets the cluster platform plug-in object.

void setCommLayer(CommLayer commLayer)

Associates a CommLayer object with this platform object. A

node platform class is supposed to delegate all code

generation functionality concerning network

communication to a separate CommLayer object. This

allows generating code for stand-alone systems and for

distributed systems in a similar way. The communication

layer generates code for the interaction between a node

and the communication system, e.g. code that sends and

receives TDL port values via the network.

Table 6. Methods of interface NodePlatform

Class AbstractNodePlatform

AbstractNodePlatform (see Figure 22) provides a default implementation of the

NodePlatform interface and stores a node name, the associated CommLayer and

cluster platform as an attribute. All specific node platform plug-ins extend this

abstract class. For supporting target specific code generation for asynchronous

activities, we provide some base functionality in the class AbstractNodePlatform. In

particular, it contains a method that prepares auxiliary data structures that are

expected to be required by all node plug-in classes. Note that these data structures

cannot be provided by the TDL compiler via the AST, as asynchronous activities are

handled per node and not per module. Thus, preparing these structures takes into

account which modules are placed on a particular node and which are stub modules,

i.e. imported from a remote node. The TDL compiler provides the involved data

structures (AsyncDecl, QualPortID, FunCall, TaskDecl) as part of the abstract

syntax tree of a module.

Code and Schedule Generation Framework 71

public String nodeName

Stores the name of the node, which acts as an identifier

of the node in distributed systems.

public CommLayer commLayer

This field contains the communication layer being used

and is set by an implementation of setCommLayer().

protected

ClusterPlatform

clusterPlatform

Stores the platform plug-in which handles the

communication between nodes in a distributed TDL

system. Set and get by straight-forward

implementations of setClusterPlatform() and

getClusterPlatform().

protected

List<AsyncDecl>

asyncs

Represents all asynchronous event sequences from non-

stub modules on this node.

protected

SortedMap<Integer,

List<AsyncDecl>>

asyncInterruptMap

Maps all interrupt numbers to the corresponding

asynchronous event sequences of non-stub modules on

this node.

public

SortedMap<Integer,

List<AsyncDecl>>

asyncTimerMap

Maps all timer periods to the corresponding

asynchronous event sequences of non-stub modules on

this node.

+ setCommLayer(commLayer: CommLayer)

+ setClusterPlatform(clusterPlatform: ClusterPlatform)

+ getClusterPlatform(): ClusterPlatform

+ isTDLDistributed(): boolean

+ getValidOptions(): String

+ consumeOptions(options: String[], idx: int): int

prepareAsyncTables()

+ nodeName: String

+ commLayer: CommLayer

clusterplatform: ClusterPlatform

asyncs: List<AsyncDecl>

asyncInterruptMap: SortedMap<String, List<AsyncDecl>>

+ asyncTimerMap: SortedMap<Integer, List<AsyncDecl>>

asyncUpdateMap: Map<String, List<AsyncDecl>>

asyncGuards: List<FunCall>

asyncTasks: List<TaskDecl>

AbstractNodePlatform

Figure 22. Abstract class AbstractNodePlatform

72 Code and Schedule Generation Framework

protected

Map<QualPortID,

List<AsyncDecl>>

asyncUpdateMap

Maps all update port triggers to the corresponding

asynchronous event sequences of non-stub modules on

this node.

protected

List<FunCall>

asyncGuards

All async guard calls from non-stub modules on this

node.

protected

List<TaskDecl>

asyncTasks

All async tasks from stub and non-stub modules on this

node. Stub modules are included in this data structure

to ensure that terminate drivers of such modules, which

might be executed asynchronously to the TDL Machine,

are properly synchronized.

public boolean isTDLDistributed()

This boolean function returns whether this node has an

associated cluster platform and is therefore part of a

distributed system or not.

public int consumeOptions(String[] options, int idx)

The class AbstractNodePlatform consumes two

options: -node <nodeName> which sets the node name

whose value is stored in the field nodeName and –debug

which activates the debug mode of a plug-in.

Correspondingly, the function getValidOptions()

informs about those two options.

void prepareAsyncTables()

This function prepares all async data structures as listed

above by iterating over all modules and their

asynchronous sequences. This method must be called

explicitly by subclasses.

Table 7. Methods of abstract class AbstractNodePlatform

Interface ClusterPlatform

This interface (see Figure 23) must be implemented by a class in order to participate

in code generation on the level of a cluster. A ClusterPlatform does not itself

perform communication scheduling, but provides a Comm Scheduler Plug-In to the

<<interface>>

ClusterPlatform

getCommSchedulerPlugin(): CommSchedulerPlugin

setCommSchedule(commSchedule: CommSchedule)

getCommSchedule(): CommSchedule

Figure 23. Interface ClusterPlatform

Code and Schedule Generation Framework 73

Comm Scheduler for the purpose of communication protocol-specific scheduling. This

plug-in maps abstract scheduling data, such as frame windows, to a concrete

communication protocol, e.g. the concrete timing of frames on the network. It is

represented by an object implementing the CommSchedulerPlugin interface and

provided by the method getCommSchedulerPlugin(). The functionality of this

interface and how it is used in the context of communication schedule generation for

a TDL system is described in detail below in section 4.3 on cluster-level code

generation.

Another important function of the ClusterPlatform interface is to provide the Comm

Schedule data structure to node platforms which have a reference to it as already

described above. The class CommSchedule (see Figure 24) contains information on

the assignment of modules to nodes and all data that is transferred between nodes,

i.e. data type and size information of synchronous and asynchronous communication.

It includes several methods to conveniently obtain the data stored in it. After the

communication scheduling process has finished, it is set and get by

setCommSchedule() and getCommSchedule() respectively.

On the basis of the final communication schedule, a cluster plug-in emits code as

required by the protocol it implements, for example a proprietary file specifying the

schedule. Note that it is not always necessary to explicitly output code, as it can be

the case that the communication schedule is encoded in data that is scattered across

the nodes of the distributed system and is therefore part of the generated code on

node level.

+ clusterName: String

+ commPeriod: int

+ nodes: CommNode[]

+ asyncFrames: CommAsyncFrame[]

+ taskPorts: CommTaskPort[]

+ ports: CommPort[]

+ members: CommMember[]

+ types: CommType[]

+ tasks: CommTask[]

+ messages: CommMessage[]

+ modules: CommModule[]

+ frames: CommFrame[]

+ isPlacedOnNode(moduleName: String, nodeName: String): boolean

+ getCommMessagesOfModule(moduleName: String): CommMessage[]

+ getLocalFrames(nodeName: String): CommFrame[]

+ getLocalFrameID(globalFrameID: int, nodeName: String): int

+ getLocalAsyncFrames(nodeName: String): CommAsyncFrame[]

+ getLocalAsyncFrameID(globalFrameID: int, nodeName: String): int

+ getAsyncSenderFrame(nodeName: String, moduleName: String,
taskName: String): CommAsyncFrame

+ getNodeID(nodeName: String): int

CommSchedule

Figure 24. Class CommSchedule

74 Code and Schedule Generation Framework

4.2. Node-Level Code Generation

After introducing the framework's foundations, this section is on the generic code

generation facilities on node level. Our code generation framework is not specific to a

certain target programming language. The TDL language report [14] contains so-

called language bindings, which encapsulate programming language specific details

in order to minimize the individual adaptations required concerning the tool chain.

They contain naming conventions and parameter passing rules concerning the

functionality code and specify how TDL types are mapped to programming language

data types. The framework plug-ins adhere to these language binding rules, currently

specified for Java and ANSI-C. This section focuses on embedded systems based on

the C programming language.

The challenge concerning code generation for TDL is to generate code for a variety of

different hardware platforms. The design goal is to come up with a flexible

architecture that allows maximum code reuse when adding support for additional

hardware targets. We decided to use repeated subclassing to achieve this. The

degree of platform dependence increases with every additional inheritance level in

the class hierarchy. The subclassing approach enables a subclass to reuse code

generation functionality code from its ancestor by means of super calls but also to

suppress or modify parts of it by selectively overriding methods.

Figure 25 illustrates a sample hierarchy of plug-in classes by means of a UML class

diagram. The foundation class AbstractNodePlatform as described in the previous

section is on top. It contains methods that must be implemented by every class that

generates code for a specific platform, most notably a method which consumes

specific options, a schedulability check method to test if all modules assigned to a

node are schedulable and a method that triggers the actual code generation. Next in

the hierarchy are the two classes JavaPlatform and CPlatform, which implement

code generation functionality for all platforms that use the Java or C programming

language respectively. JavaPlatform is an experimental plug-in for a Java TDL

runtime system. Apart from the generic platform there are no further plug-ins for

concrete platforms based on Java and also only single-node systems are supported.

CPlatform generates C glue code for the execution of TDL components by the TDL

Runtime System as presented in chapter 3. EmbeddedCPlatform aims at embedded

systems with simple operating systems which typically lack a file system and

therefore the TDL E-Code is represented as C code, which is later compiled and

linked to the executable for the particular node. It also adds task scheduling

functionality by generating dispatch tables for task execution. As examples for

operation system plug-ins we add another two classes. RTLinuxPlatform generates

code for RT Linux [29] which provides a file system and therefore extends CPlatform

directly. One inheritance level below OSEKPlatform generates code for the

OSEK/VDX [33] operating system and additional classes which implement common

code generation features used for multiple hardware platforms. The bottom level,

indicated by empty boxes in Figure 25, consists of platform-specific plug-ins that are

tailored to concrete hardware platforms and are discussed in chapter 1. Support for

any additional programming language, operating system or hardware platform

requires adding specific classes that generate the corresponding code at the

appropriate level in the class hierarchy.

Code and Schedule Generation Framework 75

Our philosophy behind generating code for a target platform is to perform as little

computation as possible on the platform itself at runtime. An important goal was to

avoid dynamic memory allocations except during startup. Concerning the glue code

required for TDL modules, all data structures and their sizes are statically known and

space can therefore be allocated statically. This significantly increases determinism

and keeps the space and CPU time overhead of executing TDL modules to a

minimum, which is especially important for embedded real-time systems with low

processing power and high dependability requirements.

In the following we describe the plug-in classes which implement support for

embedded systems programmed in C. The next two sections describe the C Platform

and the Embedded C Platform plug-ins for single-node systems. Afterwards we point

out the differences regarding code generation for stub modules. Finally, we introduce

the communication layer, which acts as an interface to the communication system for

distributed systems. Plug-ins for specific hardware platforms are subsequently

described in chapter 1.

Throughout this section we use the following example TDL application to illustrate

how the generated glue code parts from the platform plug-in classes look like. It

consists of four modules distributed across two nodes. The modules have already

been discussed in chapter 2 and contain the producer-consumer example in the

synchronous (modules Sender and Receiver) and the asynchronous version (modules

AsyncSender and AsyncReceiver). The two sender modules are mapped to Node1,

whereas the two receiver modules run on Node2.

Programming
language

Operating system &
common features

Concrete hardware
platforms

Abstract
platform

AbstractNodePlatform

CPlatform JavaPlatform

EmbeddedCPlatform RTLinuxPlatform

OSEKPlatform

Figure 25. Node platform abstraction levels

76 Code and Schedule Generation Framework

module Sender {

 sensor boolean switch uses getSwitch;

 actuator int display uses setDisplay;

 public task produce {

 output int o := 10;

 uses produceImpl(o);

 }

 start mode main [period=10ms] {

 task

 [freq=2] produce(); // LET = 10ms/2 = 5ms

 actuator

 [freq=1] display := produce.o; // updated every 10ms

 mode

 [freq=1] if exitMain(switch) then freeze;

 }

 mode freeze [period=10ms] {}

}

module Receiver {

 import Sender;

 actuator int display uses setDisplay;

 task consume {

 input int i;

 output int o;

 uses consumeImpl(i, o);

 }

 mode main [period=10ms] {

 task

 [freq=1] consume(Sender.produce.o);

 actuator

 [freq=1] display := consume.o;

 }

}

module AsyncSender {

 actuator int display uses setDisplay;

 public task produce {

 output int o := 10;

 uses produceImpl(o);

 }

 asynchronous {

 [interrupt=INT0, priority=5]

 produce(); display := produce.o;

 }

}

module AsyncReceiver {

 import AsyncSender;

 actuator int display uses setDisplay;

 task consume {

 input int i;

 output int o;

 uses consumeImpl(i, o);

 }

 asynchronous {

 [update=AsyncSender.produce.o]

Code and Schedule Generation Framework 77

 consume(AsyncSender.produce.o); display := consume.o;

 }

}

4.2.1. C Platform Plug-In

The class CPlatform is intended to act as a foundation emitting C code that is

expected to be needed for every C-based platform. In addition, it provides a set of

useful methods for its subclasses. The class writes three files for every module to the

plug-in's destination directory: A C header file (<module>_.h), a C body file

(<module>_.c) and an optional functionality code template header file

(<module>_template.h). Furthermore, it writes a C main file (tdl_main_.c) which

exists not per module but only once for every node. Note that all these files

correspond to the requirements of the C TDL Runtime System as described in

chapter 3.

The methods in CPlatform and in other framework classes adhere to a naming

convention identifying which code fragment they generate. For example, methods

generating code for the module header files are prefixed with emitH_, those for

module body files with emitC_ and those for the main C file with emitMainC_.

Following this rule, the three methods for the creation of module header files are

named emitH_Includes(), emitH_Ports(), and emitH_Prototypes(). This

separation for example enables subclasses of CPlatform to add C includes to the

header file by overriding the emitH_Includes() function with a super call and code

that emits additional include statements. Methods can also be overridden without the

super call to suppress parts of the code generation functionality.

C Module Header File

The C header file of a module contains include statements and glue code elements

which must be public, i.e. accessible from outside the module's C code.

 C Includes (emitH_Includes())

Node1/Sender_.h

#include "tdl_types.h"

#include "Sender.h"

The included C header files are the TDL type mapping for C (tdl_types.h) and

the header file of the functionality code of the module (<module>.h).

 Ports (emitH_Ports())

Node1/Sender_.h

extern tdl_int Sender_produce_o; /* public output port Sender.produce.o */

All TDL ports that need to be accessed from outside the module are specified in

the header. These are all global and public output ports of the module's tasks.

 Prototypes (emitH_Prototypes())

Node1/Sender_.h

void Sender__drivers(int n);

void Sender__sdrivers(int n);

char Sender__guards(int n);

In order to be accessible from outside, the header file contains function

prototypes for drivers, start/stop drivers and guard wrappers.

78 Code and Schedule Generation Framework

C Module Body File

The following glue code elements are written to the file <module>_.c in the

destination directory:

 C Includes (emitC_Includes())

Node2/Receiver_.c

#include "tdl_machine.h"

#include "tdl_async.h"

#include "Receiver_.h"

#include "Sender_.h"

The included header files are that of the TDL Runtime System (tdl_machine.h

and tdl_async.h), the corresponding <module>_.h header just described

above, as well as the glue code header files of all imported modules.

 Ports (emitC_Ports())

Node2/Receiver_.c

static tdl_int Receiver_display; /* private actuator port Receiver.display */

static tdl_int Receiver_consume_i; /* private input port Receiver.consume.i */

static tdl_int Receiver_consume_o; /* private output port Receiver.consume.o */

static tdl_int Receiver_consume_o_phy; /* internal value of private output port

 Receiver.consume.o */

For every TDL port a C variable is defined. For output ports an additional

internal port is generated that holds the result of a task execution until the

corresponding logical ports are updated according to LET semantics.

 Drivers (emitC_Drivers())

Node2/Receiver_.c

void Receiver__drivers(int n) {

 switch (n) {

 case 0: /* terminate task Receiver.consume */

 Receiver_consume_o = Receiver_consume_o_phy;

 break;

 case 1: /* set actuator with private actuator port Receiver.display */

 Receiver_setDisplay(Receiver_display);

 break;

 case 2: /* update private actuator port Receiver.display */

 Receiver_display = Receiver_consume_o;

 break;

 case 3: /* prepare release of task Receiver.consume (= copy input ports) */

 Receiver_consume_i = Sender_produce_o;

 break;

 }

}

A function void <module>_drivers(int n) is emitted, which executes driver

number n. The number corresponds to the argument of the E-Code's call

instruction. Drivers are emitted for mode switch, task release, task

termination, actuator update, actuator setting, sensor getting and initialization

functions. There are special release, actuator and termination drivers for

asynchronous activities. In addition, both asynchronous and synchronous

terminate drivers may trigger asynchronous events by calling the TDL Runtime

System function tdl_async_enqueue(). Note that in contrast to the interrupt

and timer triggers, the port update trigger is therefore independent of any

specific C platform.

 Start/Stop drivers (emitC_SDrivers())

Node2/Receiver_.c

void Receiver__sdrivers(int n) {

Code and Schedule Generation Framework 79

 switch (n) {

 case 0: /* start task Receiver.consume */

 Receiver_consumeImpl(Receiver_consume_i, &Receiver_consume_o_phy);

 break;

 default:

 return;

 }

}

Start drivers are used to actually call the task implementation function

contained in the module functionality code. The purpose of stop drivers is to

transfer public ports via a communication network and therefore they are

empty in the non-distributed case. The function used to execute start and stop

drivers has the signature void <module>_sdrivers(int n) and executes

driver n.

 Guards (emitC_Guards())

Node1/Sender_.c

char Sender__guards(int n) {

 switch (n) {

 case 0: /* guard exitMain */

 return Sender_exitMain(Sender_switch);

 }

 return 0;

}

For the evaluation of guards, the function char <module>_guards(int n) is

emitted to the module glue code. The guard number n corresponds to the first

argument of the if TDL Machine instruction. The function returns either 1 or 0,

depending on whether the guard evaluates to true or false.

C Main Body File

CPlatform creates a C main file named tdl_main_.c. This file is emitted once per

node and contains the initial starting point of the node's code, which can be a C

main() function or also some other operating system specific initialization hook.

Because the actually required content varies between different platforms and

operating systems, only basic elements are emitted by CPlatform.

 Includes (emitMainC_Includes())

Node1/tdl_main_.c

#include "tdl_machine.h"

#include "tdl_async.h"

#include "AsyncSender_.h"

#include "Sender_.h"

The included header files are those of the TDL Runtime System

(tdl_machine.h and tdl_async.h) and the glue code header files of all

modules placed on the specific node (<module>_.h) as described above.

 Asynchronous Activities (emitMainC_Asyncs())

Node1/tdl_main_.c

static tdl_async_AsyncSequence asyncs[] = {

 {0, 5}, /* {pending, priority} */

};

/* Asynchronously handle external interrupt 'INT0' */

void handleInterruptINT0(void) {

 tdl_async_enqueue(0);

}

80 Code and Schedule Generation Framework

static void executeAsyncSequence(int n) {

 switch (n) {

 case 0:

 AsyncSender__drivers(2);/* release async task AsyncSender.produce */

 AsyncSender__sdrivers(0); /* start task AsyncSender.produce */

 AsyncSender__drivers(0); /* terminate async task AsyncSender.produce */

 AsyncSender__drivers(3);/* update async act. port AsyncSender.display */

 AsyncSender__drivers(1); /* set actuator AsyncSender.display */

 break;

 }

}

CPlatform extends the class AbstractNodePlatform and thereby inherits the

functionality for preparing data structures for handling asynchronous activities.

It emits a list to the main file containing all such activities using an array of

tdl_asnyc_AsyncSequence struct elements, which contain a flag indicating

whether the sequence is currently pending and a priority for every

asynchronous sequence executed on a node. For the actual execution of

asynchronous activities, the function void executeAsyncSequence(int n) is

emitted. It executes the appropriate drivers for a given asynchronous activity

sequence n. For interrupt triggers, we emit generic interrupt handlers of type

void handleInterrupt<intName>(void), where intName is the identifier of

an interrupt as specified in a module's TDL code. The body of such a function

calls tdl_async_enqueue() for all asynchronous activities triggered by

interrupt X. These functions may be used inside the interrupt service routine

(ISR) of a concrete platform. The implementation of the background thread in

whose context asynchronous activities are executed, as well as the registration

of hardware interrupts and the implementation of timer triggers, are highly

platform dependent and are therefore not done in CPlatform.

 Initializers (emitMainC_Init())

Node1/tdl_main_.c

tdl_async_init(asyncs, 1); /* asyncs, nofAsyncs */

A function call to tdl_async_init is emitted to initialize the priority queue

with the asynchronous sequences data structure.

Functionality Code Template Header File

Node1/Sender_template.h

#ifndef Sender_H

#define Sender_H

#include "tdl_types.h"

/* Type definition */

/* Module initialization */

void Sender_init(void);

/* Sensor getter function for Sender.switch */

void Sender_getSwitch(tdl_boolean* switch);

/* Actuator setter function for Sender.display */

void Sender_setDisplay(tdl_int display);

/* Task functions */

void Sender_produceImpl(tdl_int* o);

/* Guard functions */

int Sender_exitMain(tdl_boolean Sender_switch);

/* Initializer functions */

#endif /* #ifndef Sender_H */

Code and Schedule Generation Framework 81

If the optional parameter -template is set, CPlatform writes an additional file

named <module>_template.h, which contains all elements that must be contained in

the C functionality code for a specific module. The file consists of includes, type

definitions for array and struct types, and function prototypes for the module

initialization function, actuator setters, sensor getters, task functions, guard

functions and initialization functions.

4.2.2. Embedded C Platform Plug-In

The abstract class EmbeddedCPlatform extends CPlatform and produces output for

typical embedded systems which often lack a file system and therefore require a

single, statically linked executable file that contains the complete executable code.

This means that E-Code files cannot be accessed at runtime and all relevant data

needs to be expressed as plain C code. In order to achieve this, the glue code is

extended by additional elements.

C Module Header File

The C header file created by CPlatform is extended by a single line of code that

defines the module C struct (tdl_machine_Module) containing all information

specifying a module. It is specified as extern so that it can be accessed by the main

file and eventually by the TDL Machine.

Node1/Sender_.h

extern tdl_machine_Module Sender__module;

C Module Body File

The content of the C body file (<module>_.c) is extended by the following elements:

 E-Code (emitC_ECode())

Node2/Receiver_.c

static tdl_machine_ECode Receiver__ecodes[] = {

 tdl_machine_CALL(1), /* #0: call 1 -- actuator init: setDisplay(display) */

 tdl_machine_RETURN(), /* #1: return */

 tdl_machine_CALL(0), /* #2: call 0 -- terminate task: consume */

 tdl_machine_NOP(1), /* #3: EOT -- end of task terminations */

 tdl_machine_CALL(2), /* #4: call 2 -- actuator update: display := o */

 tdl_machine_CALL(1), /* #5: call 1 -- actuator setter: setDisplay(display) */

 tdl_machine_NOP(2), /* #6: EOA -- end of actuator updates */

 tdl_machine_CALL(3), /* #7: call 3 -- release task: consume */

 tdl_machine_RELEASE(0), /* #8: release 0 -- uses: consumeImpl */

 tdl_machine_FUTURE(11,10000), /* #9: future 11, 10000 */

 tdl_machine_RETURN(), /* #10: return */

 tdl_machine_JUMP(2), /* #11: jump 2 -- next cycle: main */

};

All E-Code instructions are expressed as C code by means of an array of

structs (tdl_machine_ECode) that contain the E-Code opcode and parameters

as required by the C TDL Runtime System.

 Modes (emitC_Modes())

Node1/Sender_.c

/* Mode freeze Dispatch Table {start driver, stop driver, time}*/

static tdl_machine_DispatchEntry Sender__dispatchtable_freeze[] = {

 {-1, -1, 2147483647}, /* task <sentinel> */

};

/* Mode main Dispatch Table {start driver, stop driver, time}*/

static tdl_machine_DispatchEntry Sender__dispatchtable_main[] = {

82 Code and Schedule Generation Framework

 {0, 1, 0}, /* task produce */

 {0, 2, 5000}, /* task produce */

 {-1, -1, 2147483647}, /* task <sentinel> */

};

/* Modes {pcBegin, period, dispatchtable} */

static tdl_machine_Mode Sender__modes[] = {

 {4, 10000, Sender__dispatchtable_freeze},

 {16, 10000, Sender__dispatchtable_main},

};

For every mode, the instruction number where the mode begins in the E-Code,

the mode period and a mode dispatch table is emitted by using the

tdl_machine_Mode struct. The dispatch table contains all tasks that need to be

executed during a mode with the corresponding start and stop driver numbers

and a time instance in us. The table is obtained by calling an external

scheduler that implements the Scheduler interface. By default,

EmbeddedCPlatform uses the NonPreemptiveScheduler class which produces

a schedule suitable for operating systems that do not support task preemption.

 Module (emitC_Module())

Node1/Sender_.c

/* Module Runtime */

tdl_machine_RUNTIMEDATA(Sender__runtime, 1, 1)

/* Task WCETs */

static long int Sender__taskWCETs[] = {100, };

/* Module */

tdl_machine_Module Sender__module = {

 Sender__ecodes, /* pointer to the E-Code table of the module */

 28, /* number of E-codes in the E-Code table of the module */

 Sender__modes, /* pointer to the modes table of the module */

 2, /* number of modes in the module */

 Sender_init, /* function pointer to system specific initialization */

 Sender__guards, /* function pointer to the guards wrapper */

 Sender__sdrivers, /* function pointer to the start/stop drivers wrapper */

 Sender__drivers, /* function pointer to the drivers wrapper */

 &Sender__runtime, /* pointer to module runtime data structure */

 Sender__taskWCETs, /* WCETs of all tasks in the module */

};

Emits a C struct (tdl_machine_Module) representing a complete module and

contains pointers to its E-Code, modes, functionality code init function, guards,

start/stop drivers and drivers. Furthermore it stores a runtime data structure

and the WCETs of all tasks.

C Main Body File

The following content is added to the TDL Main file:

 Modules (emitMainC_Modules())

Node1/tdl_main_.c

static tdl_machine_Module* modules[] = {

 &AsyncSender__module,

 &Sender__module,

};

A C array of module structs is defined containing all modules placed on the

node.

Code and Schedule Generation Framework 83

 TDL Machine initialization (emitMainC_TDLInitCall())

Node1/tdl_main_.c

static void initTDLMachine(void) {

 tdl_machine_init(&modules[0], 2, 5000); /* modules, nofModules, stepPeriod */

}

A function named initTDLMachine() is emitted that calls the initialization

function tdl_machine_init() of the TDL Machine by passing the array of

modules and the length of the step period on the node. This function is meant

to be called by platform-specific functions emitted by subclasses of

EmbeddedCPlatform.

4.2.3. Stub Module Generation

Instead of the normal glue code for a module, both CPlatform and

EmbeddedCPlatform also generate code for so-called stub modules (see 3.3). A stub

represents a module on a remote node on which it is imported by another module

but not executed locally. In this case the TDL Comm Layer is responsible for updating

the public output ports of the stub module with the corresponding port values from

the node where it is actually executed.

CPlatform and EmbeddedCPlatform use the method isStub(ModuleDecl module)

provided by the CommLayer interface (see next subsection below) to decide whether

to emit the regular or the stub glue code. In the main file, stub modules are treated

in the same way as regular modules, i.e. their header files are included and they are

part of the modules struct emitted by EmbeddedCPlatform. Stub modules only

execute termination drivers and therefore all other functionality is suppressed. In the

following we list the differences when generating glue code for stub modules in

detail.

C Module Header File

 Ports (CPlatform.emitH_Ports())

Node2/Sender_.h

extern tdl_int Sender_produce_o; /* public output port Sender.produce.o */

extern tdl_int Sender_produce_o_phy; /* internal value of Sender.produce.o */

In addition to public output ports, for stub modules also the corresponding

internal task output ports are generated so that they can be updated by the

TDL Comm Layer.

C Module Body File

 Ports (CPlatform.emitC_Ports())

Node2/Sender_.c

tdl_int Sender_produce_o = 10; /* public output port Sender.produce.o */

tdl_int Sender_produce_o_phy = 10; /* internal value of Sender.produce.o */

Only public output ports and their corresponding internal ports are defined.

 Drivers (CPlatform.emitC_Drivers())

Node2/Sender_.c

void Sender__drivers(int n) {

 switch (n) {

 case 0: /* terminate task Sender.produce */

 Sender_produce_o = Sender_produce_o_phy;

84 Code and Schedule Generation Framework

 break;

 }

 return;

}

Only task termination drivers are generated for stub modules.

 E-Code (EmbeddedCPlatform.emitC_ECode())

Node2/Sender_.c

static tdl_machine_ECode Sender__ecodes[] = {

 tdl_machine_RETURN(), /* #0: return -- return after empty initialization */

 tdl_machine_FUTURE(3,10000), /* #1: future 3, 10000 */

 tdl_machine_RETURN(), /* #2: return */

 tdl_machine_JUMP(1), /* #3: jump 1 -- next cycle: freeze */

 tdl_machine_FUTURE(6,10000), /* #4: future 6, 10000 */

 tdl_machine_RETURN(), /* #5: return */

 tdl_machine_CALL(0), /* #6: call 0 -- terminate task: produce */

 tdl_machine_FUTURE(9,5000), /* #7: future 9, 5000 */

 tdl_machine_RETURN(), /* #8: return */

 tdl_machine_CALL(0), /* #9: call 0 -- terminate task: produce */

 tdl_machine_JUMP(4), /* #10: jump 4 -- next cycle: main */

};

For stub modules a special E-Code is generated. It does not contain any new

instructions and essentially only executes termination drivers of public tasks.

 Modes (EmbeddedCPlatform.emitC_Modes())

Node2/Sender_.c

static tdl_machine_DispatchEntry Sender__dispatchtable_freeze[] = {

 {-1, -1, 2147483647}, /* task <sentinel> */

};

static tdl_machine_DispatchEntry Sender__dispatchtable_main[] = {

 {-1, -1, 2147483647}, /* task <sentinel> */

};

/* Modes {pcBegin, period, dispatchtable} */

static tdl_machine_Mode Sender__modes[] = {

 {1, 10000, Sender__dispatchtable_freeze},

 {4, 10000, Sender__dispatchtable_main},

};

For every mode the start of the mode in the stub E-Code and the mode period

is emitted. As stub modules do not execute any functionality, only dummy

dispatch tables without any tasks are used.

 Module (EmbeddedCPlatform.emitC_Module())

Node2/Sender_.c

tdl_machine_RUNTIMEDATA(Sender__runtime, 1, 1)

static long int Sender__taskWCETs[] = {100, };

tdl_machine_Module Sender__module = {

 Sender__ecodes, /* pointer to the E-Code table of the module */

 28, /* number of E-codes in the E-Code table of the module */

 Sender__modes, /* pointer to the modes table of the module */

 2, /* number of modes in the module */

 NULL, /* STUB: no initialization */

 NULL, /* STUB: no guards wrapper */

 NULL, /* STUB: no start/stop drivers wrapper */

 Sender__drivers, /* function pointer to the drivers wrapper */

 &Sender__runtime, /* pointer to module runtime data structure */

 Sender__taskWCETs, /* WCETs of all tasks in the module */

};

Code and Schedule Generation Framework 85

Certain elements of the module struct, such as the pointers to the module

initialization, the start/stop driver and the guard wrappers, are set to NULL as

for stub modules they are non-existent.

4.2.4. Communication Layer

The nodes of a distributed system are interconnected via some sort of

communication network, also called bus. To allow different communication protocols

to be combined with our node platforms, we introduce the notion of a communication

layer.

Figure 26 depicts a UML diagram of the platform classes described in the previous

sections along with their associated CommLayer interfaces. In analogy to the platform

classes, repeated subclassing is also performed with these interfaces. Every platform

uses a class that implements a CommLayer interface which is responsible for the

generation of the code needed to interact with other nodes via a specific

communication bus. Typically, there are at least two implementations of this

interface: A trivial one for standalone nodes which are not connected to a

communication system at all and one or more that implement a concrete

communication protocol. Implementations of the CCommLayer and

EmbeddedCCommLayer interfaces handle the packing and unpacking of TDL ports

independently of the communication system actually used. Additional layers then add

communication bus specific functionality and handle code generation for specific

communication controllers used by hardware platforms. For single node systems,

both CPlatform and EmbeddedCPlatform use empty CommLayer implementations

which are named StandaloneCommLayer and StandaloneEmbeddedCCommLayer

respectively.

The hooks provided by the communication layers are called by the generic C platform

plug-ins described above and allow the corresponding CommLayer interfaces to add

specific features to the generated code.

AbstractNode-

Platform

<<interface>>

CommLayer

CPlatform

Embedded-
CPlatform

<<interface>>

CCommLayer

<<interface>>

Embedded-
CCommLayer Standard-

EmbeddedCCommLayer

Standalone-
EmbeddedCCommLayer

Standalone-

CCommLayer

Standard-

CCommLayer

Figure 26. Communication layer class diagram

86 Code and Schedule Generation Framework

Generic Communication Layer

The CommLayer interface provides basic functionality which is used by

AbstractNodePlatform. There are no direct implementations of this interface. It

provides the following methods:

public void setPlatform(NodePlatform platform)

This method associates the CommLayer with a

corresponding platform plug-in object.

public boolean isStub(ModuleDecl module)

This function signals if the specified module must be

treated as a stub module on this node. Implementing

classes determine this by querying the module to node

assignment provided in the Comm Schedule.

public void setTiMap(Map<String, Map<String,

 TaskInvocation[]>> tiMap)

Sets a map containing all task invocations of a node.

The inner map contains a String identifying the mode to

which a task invocation belongs to and the outer map

adds a String to identify the module. The task

invocations set here are intended for reuse, i.e. the

deadline field may be updated while a number of

different communication schedules are evaluated as the

deadline of a task invocation depends on the timing of

the containing frame. In the distributed case the task

invocation map is used to check the schedulability of a

node by calling NodePlatform.isSchedulable() and for

task scheduling on a node. Caching the task invocations

avoids recreating the list repeatedly and is therefore

solely a performance optimization.

public Map<String,

Map<String,

TaskInvocation[]>>

getTiMap()

Gets the map containing all task invocations of a node.

Table 8. Methods of interface CommLayer

C Communication Layer

The CCommLayer interface is associated to CPlatform and extends the CommLayer

interface. It contains multiple hook methods so that code can be added to the include

and content sections of the module C header and body file and the C main file. The

class StandardCCommLayer implements functions needed for generic distributed

platforms. It maintains a CommSchedule object which contains information on the

complete communication schedule produced by the cluster part of the code

generation framework. The following list describes its functionality:

 Include TDL Comm (emitMainC_Includes())

Node1/tdl_main_.c

#include "tdl_comm.h"

An include line for tdl_comm.h is added to the main file tdl_main_.c.

Code and Schedule Generation Framework 87

 Stop drivers (emitC_StopSDrivers(int firstID))

Node1/Sender_.c

void Sender__sdrivers(int n) {

 switch (n) {

 case 0: /* start task Sender.produce */

 Sender_produceImpl(&Sender_produce_o_phy);

 break;

 case 1: { /* stop driver for task produce , mode 1, taskRelease 0 */

 tdl_comm_Frame frame = tdl_comm_getFrame(1);

 tdl_comm_putTag(frame, 1);

 tdl_comm_putInt(frame, Sender_produce_o_phy);

 break; }

 case 2: { /* stop driver for task produce , mode 1, taskRelease 5000 */

 tdl_comm_Frame frame = tdl_comm_getFrame(2);

 tdl_comm_putTag(frame, 2);

 tdl_comm_putInt(frame, Sender_produce_o_phy);

 break; }

 default:

 return;

 }

 return;

}

Emits the stop drivers required in the module body file. The parameter

firstID is the first driver index number to be used for stop drivers. They

facilitate the TDL Runtime System's Comm Layer framework to transmit the

values of internal output ports via the network together with the corresponding

message tag.

 TDL Comm functions (emitH_Content(), emitC_Content())

TDL allows arbitrarily structured types constructed by nested arrays, structs

and primitive types. Such types are transmitted via a network by sending a

sequence of the primitive types they consist of. The code for transferring

values of structured types to and from the buffer associated with a network

frame is emitted once so that it can be reused throughout the generated code.

For every structured type a putter (put<customType>) and a getter

(get<customType>) is emitted to the module body file. Also, corresponding

prototypes are written to the module header file, as the functions might be

accessed by other modules importing the custom data structures as well. Note

that there is no example code as the producer-consumer application does not

contain any structured types.

 Message decoder function (emitMainC_Content())

Node2/tdl_main_.c

static void decodeMessage(int tag, tdl_comm_Frame frame) {

 switch (tag) {

 case 1:

 tdl_comm_getInt(frame, &Sender_produce_o_phy);

 Sender__module.runtime->mode = 1;

 Sender__module.runtime->futureTime = 5000;

 Sender__module.runtime->nextPC = 6;

 break;

 case 2:

 tdl_comm_getInt(frame, &Sender_produce_o_phy);

 Sender__module.runtime->mode = 1;

 Sender__module.runtime->futureTime = 0;

 Sender__module.runtime->nextPC = 9;

 break;

 }

}

In the main C file a function named decodeMesssage() is added. This function

has a tag number and a TDL frame as parameters. It is later called by the TDL

88 Code and Schedule Generation Framework

Comm Layer framework upon frame reception for every tag that is

encountered. The function then stores the transmitted ports in the appropriate

internal ports of the stub modules and configures the TDL Machine so that the

right termination drivers are called by setting the future time and the next

program counter (PC).

 Sending asynchronous frames (emitC_StartDriverAsyncSend(ModuleDecl

module, TaskDecl task))

Node1/AsyncSender_.c

void AsyncSender__sdrivers(int n) {

 switch (n) {

 case 0: /* start task AsyncSender.produce */

 AsyncSender_produceImpl(&AsyncSender_produce_o_phy);

 {

 tdl_comm_Frame frame = tdl_comm_getFrame(3);

 frame->position=0;

 tdl_comm_putInt(frame, AsyncSender_produce_o_phy);

 tdl_comm_sendBuffer(frame->bufferIndex, frame->tdlFrameSize);

 }

 break;

 default:

 return;

 }

 return;

}

This hook is called during start driver generation so that an asynchronous

frame is sent after the execution of an asynchronous task if needed. The

emitted code consists of calling the TDL Comm Layer framework functions for

accessing the frame, writing the task's ports in the frame's buffer and finally

sending the buffer. The asynchronous frame assigned to a task is found by

querying the Comm Schedule which contains a list of asynchronous frames.

 Receiving asynchronous frames (emitMainC_Content())

Node2/tdl_main_.c

static void receiveAsyncFrames(void) {

 tdl_comm_Frame frame = tdl_comm_getFrame(3);

 frame->position=0;

 tdl_comm_receiveBuffer(frame->bufferIndex, frame->tdlFrameSize);

 tdl_comm_getInt(frame, &Sender_produce_o_phy);

 AsyncSender__drivers(0);

}

For the reception of asynchronous frames, a function named

receiveAsyncFrames() is emitted to the main C file. It handles to reception of

all asynchronous frames required by the stub modules assigned to a node. The

function receives all relevant frames, unpacks the TDL ports and calls the

corresponding termination drivers of the stub modules to update their ports.

Embedded C Communication Layer

The interface EmbeddedCCommLayer adds the following function to the CommLayer

class hierarchy, for which a standard implementation is provided via the class

StandardEmbeddedCCommLayer.

 Stop driver number (int getStopDriverOfTaskInvocation(ModeDecl m, int
taskID, int taskDispatchTime)

Node1/Sender_.c

/* Mode main Dispatch Table {start driver, stop driver, time}*/

static tdl_machine_DispatchEntry Sender__dispatchtable_main[] = {

 {0, 1, 0}, /* task produce */

Code and Schedule Generation Framework 89

 {0, 2, 5000}, /* task produce */

 {-1, -1, 2147483647}, /* task <sentinel> */

};

The dispatch table created by EmbeddedCPlatform must contain the stop driver

number of a task invocation so that it can be executed. This number is

provided by StandardEmbeddedCCommLayer. Note that the stop drivers are

emitted by StandardCCommLayer and therefore consequently both classes need

to use the same numbering scheme. If there is no stop driver to execute, e.g.

if the given task is non-public or there is no distribution at all, the function

returns -1. The function identifies a task invocation by its mode, its ID, and a

time instant within its logical execution.

4.3. Cluster-Level Code Generation

In the last section, we added communication capabilities to individual nodes by

assigning them a communication layer. For event-triggered communication protocols,

such as Ethernet or CAN, this can already be sufficient to enable network

communication between nodes. However, such an approach is not suitable for hard

real-time systems as for instance collisions may prevent frames from being

transmitted in a predictable way. Time-triggered communication protocols such as

TTP (Time-Triggered Protocol) or FlexRay [34] overcome this problem, but require a

global communication schedule for their operation. Usually, such a schedule is

created manually as it is difficult to automatically extract the scheduling

requirements of arbitrary systems. LET-based systems such as TDL however describe

the data flow and timing requirements of their components explicitly and

consequently it is feasible to perform fully automatic communication scheduling. This

section describes the scheduling and code generation process on the cluster-level of

our code generation framework.

As preliminaries for communication scheduling, we hold on to a number of

assumptions:

 The network infrastructure is based on broadcast semantics, i.e. a frame sent

by one node can be received at the same time by all other nodes

 Packets sent by different nodes are not combined into a single packet but are

sent as individual network frames

 Collision free access to the shared communication medium via a TDMA (Time

Division Multiple Access) approach as used by time-triggered protocols

 Adherence to the producer-consumer model, which means that the nodes that

generate information trigger the sending over the network

 A mechanism for distributed clock synchronization

Some of these requirements, such as the TDMA property or the clock synchronization

service, can be implemented on top of communication protocols which do not support

them natively. This can be done by generating schedules accordingly and by

extension of the platform-specific TDL Comm Layer part of the runtime system. For

example, it is possible to use a TDMA communication schedule for the event-

triggered protocol CAN and also implement a time synchronization service for it [15].

90 Code and Schedule Generation Framework

The scheduling mechanisms described below are based on previous work but have

been significantly improved and extended. The feasibility of automatic scheduling for

LET-based systems has for instance been demonstrated in [15], where the notion of

transparent distribution is proposed and a prototype implementation is presented.

However, it is tailored to a specific bus protocol, namely CAN, and is not designed in

a way so that it allows adaptations to other protocols. Also there is no clear

separation between what we call the Comm Scheduler and the Comm Scheduler

Plug-In, i.e. between platform independent scheduling tasks that need to be

performed for every LET-based system and those which are specific to concrete

network architectures. In [35] this separation is improved, but still there is no clean

interface specified such as the one we propose and which explicitly states what must

extends

TDL Modules &

Module

Deployment

CommSchedule

Generated
Code

Generic

Comm Layer

Specific
Node Plug-In

platform-dependent platform-independent

1.

3. schedule frames

5. frame timing

4. check

schedulability
7.

8.

9.

CommScheduler

Converter

FrameGenerator

Generic

Node Plug-
In

Specific

Comm Layer

CommScheduler-
Plugin

CommProperties
2.

6.

Figure 27. Detailed framework collaboration diagram

node-level

cluster-level

Code and Schedule Generation Framework 91

be implemented to support an additional communication protocol. Apart from this

clear separation of concerns, we designed our framework so that the platform-

independent strategy by which messages are assigned to frame windows is easily

exchangeable. In previous implementations this strategy was fixed and relied on

heuristics that assigned messages with the same sender and similar release time and

deadlines to the same frame while trying to minimize the number of frames that are

generated. We improved this strategy by applying an iterative approach which varies

the parameters controlling the message-to-frame mapping. As an alternative to the

use of heuristics for this mapping, we additionally developed a scheduling strategy

which employs a genetic algorithm. A further key improvement of our scheduling

framework is the ability to check nodes for schedulability during the communication

scheduling process. This prevents that a communication schedule is produced that

eventually is not usable because of restrictions imposed by node scheduling

constraints. Apart from all these extensions, our implementation is also the first to

incorporate asynchronous communication frames.

Figure 27 depicts a more detailed overview of the code generation process already

shown in Figure 16 above, where the basic steps of the communication scheduling

process have already been described. The numbers in the figure indicate the order in

which the individual steps are performed. In comparison to the figure above, also the

internals of the Comm Scheduler are shown and the communication layer on node

level is added. Inside the CommScheduler, a class extending the abstract class

CommProperties is used to store a list of properties of a communication platform.

The properties class is supplied by the CommSchedulerPlugin interface so that it can

be tailored to specific protocols. The interface FrameGenerator makes the strategy

which is used to map messages to frame windows exchangeable and is supplied in

the CommScheduler's constructor. The CommScheduler eventually uses the Converter

class to construct the CommSchedule data structure.

The next subsections detail the Comm Scheduler, two strategies for creating frame

windows, and finally the Comm Scheduler Plug-in interface.

4.3.1. Comm Scheduler

The Comm Scheduler is the platform-independent part of the code generation

framework on cluster level. It coordinates the scheduling process which has TDL

modules and their mapping to a distributed platform as input. As shown in section

2.3, for every TDL task that needs to transmit a message via the network there is a

communication window for doing so inside its LET period. It is defined as the time

interval between the release and deadline of a message or a frame. The Comm

Scheduler computes all those communication windows and generates a list of

messages that need to be transferred between nodes. Those messages are then

packed into frames, whereby their concrete timing is determined by the platform-

dependent Comm Scheduler Plug-In. Finally, the Comm Scheduler produces a

CommSchedule data structure as depicted in Figure 27 as output, which contains the

+ CommScheduler(strategy: FrameGenerator)

+ createCommSchedule(nodes: Node[], modules:
ModuleInstance[], plugin: CommSchedulerPlugin,
buildProgress: BuildProgress): List<Frame>

+ getNofMessages(): int

+ getAsyncFrames(): List<AsyncFrame>

CommScheduler

Figure 28. Class CommScheduler

92 Code and Schedule Generation Framework

complete scheduling information.

As the first step in the communication scheduling process, the CommScheduler class

(see Figure 28) must be initialized. In its constructor a strategy represented by the

FrameGenerator interface and which assigns messages to frame windows must be

set:

public CommScheduler(FrameGenerator strategy)

We describe two such strategies, namely one for iterative scheduling and one that

employs a genetic algorithm, in the next two subsections.

The actual scheduling process is triggered by calling the following function of the

CommScheduler class:

public List<Frame> createCommSchedule(Node[] nodes, ModuleInstance[]

 modules, CommSchedulerPlugin plugin, BuildProgress buildProgress)

It orchestrates the schedule generation and is parameterized with an array of nodes

and modules, a plug-in for the Comm Scheduler and an object implementing the

BuildProgress interface. In comparison to ModuleDecl, which is used by the

framework foundation classes, ModuleInstance represents a TDL module which is

placed on a specific node. A plug-in implementing the CommSchedulerPlugin

interface handles platform-dependent scheduling concerns. This interface most

notably contains functions to determine the communication period of the cluster and

to set concrete timings for synchronous and asynchronous frames while obeying the

constraints of a specific communication protocol. Furthermore, it provides a class

which extends the abstract CommProperties class containing properties of the

communication protocol. BuildProgress is used to provide feedback during schedule

generation as this might take a considerable amount of time. Finally, the scheduling

function returns its results as a list of frames. The individual steps performed by this

core function of the Comm Scheduler are described below.

While synchronous frames are returned directly by the createCommSchedule()

method of the Comm Scheduler, asynchronous frames are obtained by calling the

getAsyncFrames() method after the function has finished. As a next step, the results

of the scheduling process are converted to the CommSchedule data structure by using

the Converter class. The CommSchedule contains information about nodes, frames,

messages, tasks and task ports. This data structure is important for subsequent code

generation for individual nodes. It is also written to disk as a file named

commschedule.properties. In this way, the scheduling results can be used by

external tools, for example by a network analyzer tool to decode the TDL ports

contained in the network frames. Finally, the frames and the Comm Schedule are

passed to the ClusterPlatform using the setFrames() and setCommSchedule()

methods.

In the following, we describe the communication schedule generation process

performed by the createCommSchedule() method step-by-step.

1) Check of Communication Properties

The abstract class CommProperties contains a set of properties for a communication

protocol, which are typically edited via a graphical user interface such as the

TDL:VisualDistributor. The function checkCommProperties() checks those properties

for correctness and consistency. This is done to prevent creating a schedule that

does not conform to the communication protocol's specification. Certain properties

such as the minimum and maximum communication cycle length and the minimum

Code and Schedule Generation Framework 93

and maximum size of a frame in bytes are mandatory fields already present in the

abstract class CommProperties.

2) Identification of Port Receivers

This step identifies for all output ports of all modules the nodes which receive these

ports. The number of such nodes can be from zero to all nodes in the system. The

information is stored in the module instance data structure the CommScheduler uses.

Furthermore, for every node a flag isSender is set, indicating whether a module

sends anything on the network or not. This flag can be set following two different

policies called port filters which implement the PortFilter interface. While the

PublicPortFilter does not filter out any ports, the RequiredPortFilter checks

whether a port is actually received on any other node and filters out the rest. The

latter leads to a reduced number of bytes to be transferred via the communication

network.

3) Compute Communication Period

This step calculates a suitable communication period, which is the time after which

the communication schedule of the system repeats itself. The challenge is to find a

repeating pattern in the communication requirements of multiple modules with

multiple modes with different mode periods. An important constraint of LET-based

description languages such as TDL is that they restrict mode switches such that task

invocations are never interrupted by a mode switch. Thus, mode switches are said to

be harmonic, that is, a mode switch must not occur during the LET of any task

invocation of the currently active mode. Therefore, the period of a mode switch must

be a multiple of the LCM (least common multiple) of the period of tasks invoked in

this mode. Furthermore, the mode period is always a multiple of the periods of task

invocations and mode switches.

As each mode in every module may have its specific communication requirements,

an obvious candidate for the communication period is the longest time span without

a mode switch in any module. To calculate this period, we define for a given module

M the term mspGCDM as the GCD (greatest common divisor) of mode periods and

mode switch periods of all modes in M. We know that within the time span

[N*mspGCDM .. (N+1)*mspGCDM] there will not be a mode switch within module M.

In other words, we can express the mode switch instants as an integer multiple of

mspGCDM. Based on this, we calculate the bus period as the GCD of the mspGCDM of

each module M which communicates on the bus, i.e. whose isSender flag is set.

Consequently, each mode period consists of an integer multiple of communication

periods and we introduce the term phase in order to distinguish these mutually

exclusive parts of a mode.

Note that the resulting period from the calculation just described may be unsuitable

for certain communication protocols. Therefore, the Comm Scheduler Plug-In has the

possibility to refine it by dividing it by an integer number.

4) Generate List of Messages

We generate a global list of messages representing all the information which must be

transferred via the communication network of a TDL system. We define the term

message as the collection of all values produced by a task invocation's public output

ports. Note that if a task is invoked N times per mode period, N messages are

produced. As an optimization, public output ports that are not used by any client

may be ignored according to the port filters described in step 2 above.

94 Code and Schedule Generation Framework

A message has a unique tag defining its precise origin. The tag defines the node,

module, mode, task invocation, and the phase of the mode in which the message has

been produced. The size of a message is measured in bytes as the sum of the size of

the contained values and the size of the tag.

Each message has individual timing constraints. The release constraint is the earliest

time instant when message sending can be started. The deadline constraint of the

message is the latest time instant when the message sending must be finished. A

straight-forward approach is to set the release constraint to the release time of the

task invocation that produces that message plus its worst case execution time

(WCET). Note that this is an optimistic estimate as the actual release time depends

on the task schedule used, but which is not known at this point in time in the

scheduling process. The deadline constraint results from the end of the LET of the

producer task's invocation.

During this scheduling step also the task invocation map tiMap is created. It contains

all task invocations of all modes in all modules on all nodes. It is passed on to the

Comm Scheduler Plug-In which in turn passes it on to the communication layer of

the individual nodes. The task invocation map is used for task scheduling on node-

level in the distributed case. It is a performance optimization that enables updating

the task invocation deadline field while a number of different communication

schedules are evaluated. This is necessary as this deadline depends on the timing of

the frame containing the ports of the task invocation.

5) Generation of Frame Windows out of Messages

A key problem in finding a schedule for a TDL system lies in the fact that every

module may switch its mode independently from all other modules. This leads to

different communication requirements for every combination of active modes

throughout the system. Due to the exponential number of such combinations, it is

not feasible to generate all these possible schedules and change them dynamically at

runtime. The combinatorial explosion of modes is tackled by the notion of dynamic

multiplexing as the foundation of communication schedule generation for TDL

systems [15]. This approach creates a single schedule by the length of one

communication period whose length calculation is described above. Every mode

consists of one or more consecutive communication periods, which we call the

phases of a mode. For every message in every phase, we know its release and

deadline constraint and its size. At runtime, the contents of each frame changes

dynamically depending on the currently active mode and the phase it is in. The

message tag described above identifies the contents of frames, i.e. the origin of its

messages, at runtime.

In this scheduling step, we assign every message to a communication frame window

in accordance to the dynamic multiplexing approach just described. Frame windows

have a release time, a deadline, a size, a sender and a list of receiver nodes. We

assign multiple messages to a frame when possible. Messages must have the same

sender as the frame they are assigned to. The release constraint of a frame is the

maximum of the release constraints of the bound messages and the deadline

constraint of a frame is the minimum of the deadline constraints of the bound

messages. The schedule generator guarantees that the frame size and constraints

are sufficient for the communication requirements of all phases. Note that the

mapping of messages to frame windows is not unique, as with every message there

is a choice of whether (1) to add it to an existing frame by possibly tightening its

constraints or increasing its size or (2) to create a new frame that matches the

constraints of the message exactly.

Code and Schedule Generation Framework 95

To exemplify a possible mapping of messages to frame windows, we consider a

module with a mode of execution that has three phases, and we assume that it

produces message 1 of 4 bytes in phase 1, message 2 of 3 bytes in phase 2, and two

messages 3 and 4 of 1 byte each in phase 3. Figure 29 shows the individual

messages and the frame they are bound to throughout the whole mode period

consisting of three distinct phases, i.e. the length of the mode period equals to 3

times the communication period. The left and right bounds of the message and frame

boxes represent their release and deadline constraints. Respecting their size and

timing constraints, all messages may be bound to the same frame with size 4 bytes

in the schedule.

Although the concept of dynamic multiplexing is always the same, the actual

assignment of messages to frame windows is an optimization problem which we

factored out using the FrameGenerator interface. In comparison to previous

implementations, we had to restructure the scheduling algorithm as the generation

of the list of messages and the creation of frame windows were intertwined. In

contrast to that, we first generate a complete list of messages as described in the

last step and then use the following function to assign them to frame windows, which

is the only function in the interface:

public List<Frame> generateFrameWindows(List<Message> messages,

 CommSchedulerPlugin plugin, BuildProgress buildProgress)

The function generateFrameWindows returns a list of frames on the basis of a list of

messages. Furthermore, it is supplied with a CommSchedulerPlugin which assigns

concrete timings to frames, checks whether a set of frames is schedulable at all on a

concrete communication protocol and provides a metric in the range from 0 to 1

measuring how good the scheduling solution is. An instance of the class

BuildProgress is provided to allow the frame generator strategy to output

information on its progress, which is especially useful when it can be expected that

the algorithm takes a considerable amount of time. We discuss two FrameGenerator

implementations in the subsections below.

phase 1

15 ms 10 ms

frame

0 ms 5 ms

frame frame

msg 1 msg 2 msg 3

msg 4

release deadline

phase 2 phase 3

mode period = 3 communication periods

Figure 29. Sample binding of several messages to the same frame

96 Code and Schedule Generation Framework

6) Frame Scheduling

As a result of the last step, every frame is assigned a window in which it must be

scheduled. Now, the Comm Scheduler Plug-In must assign a concrete start and end

time for every frame which lies within its timing window. Note that it does make a

difference where exactly in this window a frame is scheduled. As already pointed out

above, the start of this window is only a best-case estimate and it is not guaranteed

that the whole system is schedulable if frames are actually scheduled at the

beginning of this window, as this might constrain the task scheduler too much so

that no valid task schedule can be found. Therefore we require the Comm Scheduler

Plug-In to schedule all frames as late as possible. The transmission time of a frame

depends on communication protocol specifics such as the transmission speed and

timing properties such as inter-frame gaps. The scheduler might also generate extra

frames, for example to implement time synchronization between nodes. All these

requirements must be taken into account for calculating correct frame start and end

times. The plug-in may also merge frames when their timing requirements are

compatible and they have the same sender. Figure 30 shows a sample mapping of 3

frame windows to 3 frames aligned according to the constraints of a communication

platform.

Note that while frame scheduling by the Comm Scheduler Plug-in may already be

invoked by the frame windows strategy in the previous step, this is only optional and

the results are not stored in the frame list which the strategy returns. Therefore, the

frame scheduling step must be performed in any case after the list of frame windows

is obtained.

The Comm Scheduler Plug-In can check whether the calculated start and end times

for frames lead to a feasible schedules on node level by calling the isSchedulable()

method of the NodePlatform. This is a key feature of our framework as it takes into

account the interdependence of communication and node task schedules and thus

prevents the whole code generation process from running into a dead end by

creating a communication schedule for which not all nodes are able to come up with

an appropriate task schedule.

The following function implements communication platform-specific frame scheduling

inside the CommSchedulerPlugin interface:

public double scheduleFrameWindows(List<Frame> frameWindows)

3 ms 5 ms 4 ms

1

0 ms 2 ms

2 3

frame window 1

frame window 2

frame window 3

1 ms

communication period

Figure 30. Sample mapping of frame windows to frames

Code and Schedule Generation Framework 97

The list of frames is updated by setting the startTime and endTime field of a Frame.

Frames may also be merged, resulting in a change in the number of frames. The

return value of type double returns a metric indicating how good a solution is on a

specific communication protocol, e.g. by reflecting the relative bandwidth usage. It is

negative when the set of frames is not schedulable at all. This might for example

occur when the bandwidth of the protocol simply is too small to accommodate all

frames that must be transferred or also when the resulting frame schedule leads to

nodes where no task schedule can be found.

After the list of frames is returned, the Comm Scheduler sorts it so that it is in

chronological order.

7) Scheduling of Asynchronous Frames

Until now, we only considered how synchronous frames are scheduled by the Comm

Scheduler. Asynchronous frames and their associated tasks are of a lower priority

and therefore are scheduled after synchronous frames by using the bandwidth which

is still available. This means that that do not participate in finding an optimal

schedule for synchronous frames. Note that there is no strict deadline for

asynchronous frames.

As a first step of the scheduling part handling asynchronous communication, all

asynchronous messages of all modules in the system are identified. As in general all

such messages are triggered at a different time at runtime, we map each of them to

an individual asynchronous frame. We assign priorities to the frames according to the

priorities assigned to the asynchronous activity producing the message. Next, the

following function of the Comm Scheduler Plug-in is called to schedule the list of

asynchronous frames, which are passed in order of descending priority:

public void scheduleAsyncFrames(List<AsyncFrame> asyncFrames,

 List<Frame> frames)

The function performs the mapping of the asynchronous frames to cluster platform

specific IDs stored in the field asyncFrameID in each AsyncFrame object of the list of

asynchronous frames. Synchronous frames are passed as well, giving the plug-in the

ability to schedule asynchronous frames as synchronous ones.

4.3.2. Iterative Frame Generator

In this subsection we describe one implementation of the FrameGenerator interface,

i.e. a platform-independent strategy for the creation of frame windows out of the list

of messages exchanged between modules in a distributed TDL system. It bases on

the scheduling algorithm presented in [15] and [36], but is extended (1) by iterating

over multiple threshold values used to decide whether to create a new frame window

or to bind a message to an already existing frame and (2) by taking into account the

metric that is returned by the platform-specific Comm Scheduler Plug-in. The

iteration makes it more likely to find a schedule at all or to find a better solution in

comparison to using a fixed threshold value as in existing implementations. In the

following, we first introduce a metric that measures the compatibility of a message

with an already existing frame and then explain the algorithm which consists of an

inner loop creating a candidate set of frames and an outer loop which controls how

the set is created and evaluates it.

The frame metric consists of two parts called overlapping metric and enlargement

metric. They provide a measure for the compatibility of the timing and size

constraints between a frame and a message.

98 Code and Schedule Generation Framework

The overlapping metric measures the degree of overlapping between a message and

frame window. The window of a message or a frame is the time interval between its

release and its deadline. If we allocate the message to a frame, then the new timing

constraints for the frame will be the window of the overlapping section. Therefore,

we want a high degree of overlapping, as otherwise the timing constrains become

too restrictive and we reduce the chance to find a feasible schedule. The overlapping

and the overlapping metric as an average percentage are defined by the following

formulas. The metric yields 1 if the message and the frame window overlap

completely and 0 if there is no overlapping at all.

).,.().,.(rmsgrframeMaxdmsgdframeMingoverlappin 

2

.... rmsgdmsg

goverlappin

rframedframe

goverlappin

metric goverlappin







The enlargement metric measures by how much the size of a frame needs to be

enlarged so that the message fits in. It yields 1 if the frame does not need to be

enlarged at all and a value between 0 and 1 if enlargement is necessary, where

smaller values indicate more enlargement. The following formulas are used to

calculate the enlargement metric:

)..,0(availableframesizemsgMaxtenlargemen 

tenlargemensizeframe

sizeframe
metric tenlargemen




.

.

In order to get a single metric value the overlapping metric and the enlargement

metric are combined using the following formula giving both metrics equal weights.

2

tenlargemengoverlappin metricmetric
metric




This formula only applies when both metrics yield a positive value. If either metric

equals to 0 or less, then the overall metric is 0 as well.

The inner loop of the algorithm creates frame windows based on a specific given

threshold. All messages are considered one after another. At the beginning, a new

frame is created and its size, release and deadline are simply copied from the

message so that the frame window is an exact fit. For all subsequent messages, we

check for all frame windows already created how well they fit by computing the

heuristic metric described above, measuring the compatibility of a message to an

already created frame. If for the best matching frame the metric exceeds the given

threshold, the message is bound to the frame and the frame's size, release and

deadline constraints are updated accordingly. Otherwise, a new frame is created for

the message. This is repeated until all messages are bound to frame windows.

Thereby, the threshold value controls whether the algorithm produces a lot of small

(in terms of its size in bytes) frame windows or a small number of large frame

windows.

The outer loop iterates over a range of thresholds from 0.1 to 1.0 in customizable

increments. For every value the inner loop is invoked and then the Comm Scheduler

Plug-in is called to evaluate the schedule based on the returned metric of the

scheduleFrameWindows() method. The strategy eventually returns the set of frame

windows which yields the highest metric value.

Code and Schedule Generation Framework 99

4.3.3. Genetic Frame Generator

The second strategy we developed for mapping messages to frame windows

facilitates a genetic algorithm, which is commonly used to solve scheduling problems

[37]. Instead of using a heuristic metric and deciding message by message if it

should be added to one of the already existing frames, we formulate the optimization

problem so that it can be solved by running a genetic algorithm. We found that such

algorithms have already been successfully applied in the field of communication

scheduling, for example for the FlexRay protocol [38]. The approach described in

[38] allocates a set of tasks to nodes which are connected via a FlexRay bus [34] so

that various constraints concerning task deadlines and message response and

freshness times are met. Our application of the genetic algorithm differs as our task

to node mapping is supplied by the user and our all constraints are directly derived

from the LETs of the tasks. Also note that as long as those LET-imposed constraints

are met the observable behavior of the system does not depend on when exactly a

message is sent. Furthermore our approach is not restricted to a specific

communication protocol as it is located in the platform independent part of our

scheduling framework.

In general, a genetic algorithm requires two things to be defined:

 a genetic representation (DNA) of the solution domain

 a fitness function to evaluate the solution domain

In our case the solution domain are all possible message to frame assignments

where the number of messages is fixed for a given system and the number of frames

can vary from 1 up to the number of messages. Consequently, we use an array of

integer values with length equal to the number of messages as DNA encoding. We

assign each message to a frame by assigning an integer frame number to each

message, i.e. DNA[i] = j associates frame j to message i. An advantage of this

genetic representation is that every message is assigned to a frame and that the

number of frames can vary between 1 up to the total number of messages. One

major disadvantage however is that it is possible to create invalid solutions as there

are restrictions on what messages can be assigned to the same frame. In order to

improve the result when performing crossover of two DNAs, we apply a normalization

algorithm every time the DNA is changed, which is after initialization and when

applying crossover and mutation. The normalization purges unused frame numbers

and sorts frames by how many messages are assigned to it. It does so by giving the

number 0 to the frame with the most messages assigned to it and so on. Consider

the following DNA example:

5 5 5 3 2 3

Our normalization step would transform this sequence to

0 0 0 1 2 1.

The fitness function calculation is actually divided into two steps. As first step we

apply a fast check on a solution by checking two basic criteria every valid solution

must fulfill. Those are that a frame only is allowed to contain messages from the

same sender node and that no messages with conflicting timing requirements are

assigned to the same frame. Only when this check passes we apply our more

sophisticated and also much more expensive fitness calculation function. We decided

that a reasonable fitness function depends on what communication protocol is

actually used to take into account its specific properties. Consequently, the fitness

calculation is obtained by running the Comm Scheduler Plug-In and using the return

value of the schedule function scheduleFrameWindows() as described above. This

function also takes into account whether the assigned frame timings lead to a

100 Code and Schedule Generation Framework

feasible task schedule on all nodes involved. In both steps, negative fitness values

indicate solutions that are unschedulable.

A generic genetic algorithm works as follows:

1) Generate initial population

2) Evaluate the fitness of each individual in the population

3) Repeat until termination criteria is met:

a) Select fittest individuals to reproduce

b) Breed new generation through crossover and mutation (genetic

operations) and give birth to offspring

c) Evaluate the individual fitness of the offspring

d) Replace worst ranked part of population with offspring

In step 1 we simply use a random initialization, i.e. we assign each message a

random frame with a number from 0 to (number of messages - 1) and apply our DNA

normalization as proposed above.

The fitness evaluation in step 2 and step 3c requires that the DNA of each individual

is converted to a list of frames with messages assigned according to the DNA frame

to message mapping. Only after that conversion the fitness evaluation can be

applied.

As termination criteria in step 3 we use a fixed number of generations that can be

specified by the user. Other feasible termination criteria would be a timeout or a

termination if the mean or maximum fitness does not increase anymore during a

certain number generations.

The crossover and mutation step 3c is performed by selecting a random crossover

point and creating a new DNA by using two individuals out of the pool of fittest

individuals as selected in step 3a. This is done by copying the DNA of one individual

up to the crossover point and the DNA of the another individual from there on.

Mutation is applied during this recombination process by replacing a DNA element by

a random number between 0 and (number of messages - 1) at a certain probability.

This probability is called the mutation rate in the context of genetic algorithms. It

must be high enough to enable sufficient exploration of the solution space but must

not be too high as this would lead to too much destruction of good DNA sequences.

We found a mutation rate of about 1 percent to be a feasible compromise.

Results

We tested the proposed genetic algorithm based scheduling by generating a random

set of TDL modules which exchange data with each other and are distributed across a

set of nodes. The algorithm was able to come up with a valid solution in all cases in

which the heuristic approach found a valid schedule. With a pool of 100 individuals it

typically took only a few generations until at least one valid solution was found. After

about 50 generations, the fitness of the best individual reached the level of the

heuristic strategy. We observed that when we increased the number of messages in

the system the genetic algorithm had problems finding a solution as then the number

of generations necessary to obtain at least one valid solution increased considerably.

For an example with 50 messages it took almost 100 generations to encounter the

first valid solution. However, it is important to note that for the fitness calculation

during these 100 generations only the fast fitness check was needed, which is

significantly less expensive than the one used to evaluate valid solutions. In such

Code and Schedule Generation Framework 101

cases the number of valid solutions that pass the fast scheduling check is small

compared to the whole solution domain.

When comparing results of test cases with less than 40 messages with the results of

the old, heuristic approach, we observed that we get similar solutions after less than

100 generations using a population size of 100 individuals. We consider this as

evidence that the heuristics can indeed be replaced by the use of the proposed

genetic algorithm and we are confident that this also holds for cases with more than

40 messages with an improved DNA representation, which restricts the solution

domain so that the number of invalid solutions is minimized.

4.3.4. Comm Scheduler Plug-In

This section contains the full specification of the Comm Scheduler Plug-In, i.e. of the

CommSchedulerPlugin interface as depicted in Figure 31. It lists all interface

functions even though some of them have already been discussed in detail above.

The interface is used to abstract from a concrete communication protocol. It models

aspects relevant to communication scheduling and is most notably used to provide

various protocol-specific properties and methods which assign concrete timings to

abstract synchronous and asynchronous frames. Example plug-ins implementing the

interface are presented as part of chapter 1.

public CommProperties getCommProperties()

Returns an object of type CommProperties appropriate

for the specific communication protocol the plug-in

implements. Basic properties such as the minimum and

maximum communication cycle length and the minimum

and maximum size of a frame in bytes are mandatory

fields already present in the abstract class

CommProperties.

<<interface>>

CommSchedulerPlugin

getCommProperties(): CommProperties

getCommPeriod(int mspGCD): int

getTagSize(int nofMsgs, int msgID): int

newFrame(int senderNodeID): Frame

newAsyncFrame(ModuleReader.Task asyncTask): AsyncFrame

getMaxFrameSize(): int

setTiMap(Map<String, Map<String, Map<String,
TaskInvocation[]>>> tiMap)

scheduleFrameWindows(List<Frame> frameWindows): double

scheduleAsyncFrames(List<AsyncFrame> asyncFrames,
List<Frame> frames)

Figure 31. Interface CommSchedulerPlugin

102 Code and Schedule Generation Framework

public int getCommPeriod(int mspGCD)

This function enables plug-ins to define the

communication period so that it obeys platform-specific

restrictions. The returned communication period must be

an integer divider of mspGCD, which is the maximum

possible period calculated as the GCD of all mode periods

and mode switch periods of the sending modules of a

distributed TDL system.

public int getTagSize(int nofMsgs, int msgID)

Returns the number of bytes required for the tag of a

message. The size is calculated based on the total

number of messages and a specific message ID. These

two parameters enable either a fixed number of tag

bytes depending on the total number of messages as

well as a variable length encoding depending on the

message ID.

public Frame newFrame(int senderNodeID)

This is a factory method to create Frame objects used for

the list of frames in the Comm Scheduler. For this

purpose, either the default class Frame can be used or a

subclass of it that can contain communication platform

specific properties or methods.

public AsyncFrame newAsyncFrame(ModuleReader.Task asyncTask)

This method is analogous to the newFrame() factory

method above, but for asynchronous frames and

consequently returns an AsyncFrame or a subclass of it.

public int getMaxFrameSize()

Returns the maximum frame payload size in bytes,

which may for example depend on the length of the

communication period or other properties and

constraints.

public void setTiMap(Map<String, Map<String, Map<String,

 TaskInvocation[]>>> tiMap)

This method passes information about task invocations

to the plug-in. They are required for a performance

optimization as their deadlines are updated according to

when the corresponding messages are scheduled during

testing various communication schedules. Typically, the

tiMap is split and passed on to the CommLayer of the

individual nodes which are responsible for task schedule

generation.

Code and Schedule Generation Framework 103

public double scheduleFrameWindows(List<Frame> frameWindows)

This core function of the plug-in interface assigns

concrete timings to the frame windows passed by the

Comm Scheduler. It sets the start and end time of the

Frame objects and might also alter the list by merging

frames. The calculated timings reflect the requirements

of the communication protocol the plug-in represents

and for example depends on the data rate, the frame

encoding and inter-frame gaps. The return value of type

double indicates how good a solution is on a specific

communication protocol. It is negative when the set of

frames is not schedulable at all and between 0 and 1 if it

is, where a better schedule returns a higher number.

public void scheduleAsyncFrames(List<AsyncFrame> asyncFrames,

 List<Frame> frames)

Performs the mapping of the asynchronous frames to

communication protocol specific IDs which are set for

every AsyncFrame. Asynchronous frames are sorted by

descending priority of their corresponding events. The

list of already scheduled synchronous frames is also

passed to enable transferring asynchronous frames as

synchronous one by adding them to this list.

Table 9. Methods of interface CommSchedulerPlugin

5. Platform-Specific Adaptations for FlexRay

This chapter presents platform-specific implementations of plug-ins to the TDL Comm

Layer framework of the TDL Runtime System as well as to the code and schedule

generation framework. We describe the prototyping hardware and node platform

plug-ins for two networked target platforms, namely the Node Renesas provided by

DECOMSYS (now Elektrobit), and the dSPACE MicroAutoBox. Both platforms are

widely used for prototyping of embedded systems in the automotive industry. They

are connected via a FlexRay communication bus, whose global time base is used to

synchronize time-triggered TDL activities and for which we present a communication

scheduling plug-in.

By using our framework and the adaptations for the FlexRay platforms and

communication bus, we are able to automatically generate a fully functional FlexRay

system that runs arbitrary TDL components. The only requirement is that both CPU

power and network bandwidth are sufficient to execute all TDL modules – otherwise

no code is generated.

In the next two sections we introduce the FlexRay protocol and describe the

prototyping hardware. Then we detail all adaptations and plug-ins required to map

TDL modules to a distributed FlexRay system. The chapter is concluded with a case

study involving three FlexRay nodes.

5.1. The FlexRay Protocol

FlexRay [34] is a time-triggered TDMA communication protocol intended for

automotive applications. Its development started in 2000 and concluded with

specification version 3.0 in 2009. It is designed as successor to the widely used CAN

protocol and additionally for safety critical applications such as steer-by-wire

systems. FlexRay operates at a speed of 10 MBit/s and thus has a significantly higher

bandwidth than other common field bus protocols such as CAN or LIN. Furthermore,

it operates collision-free within the time-triggered part and therefore exhibits

predictable behavior and includes a distributed clock synchronization service. The

first use of FlexRay in automotive series production was in 2006 for an optional

adaptive damping system in the BMW X5. Its introduction for vehicle core functions

was in 2008 in the BMW 7 Series.

A FlexRay communication cycle as depicted in Figure 32 has a fixed length specified

at design time. The cycle constantly repeats itself and consists of a mandatory static

segment, representing the time-triggered aspect of FlexRay, and an optional

dynamic segment. Furthermore, a FlexRay cycle may contain a so-called symbol

window which is used to transmit a single symbol out of a selection of three symbols

as pre-defined by the FlexRay specification. A cycle period is concluded with a

network idle time (NIT) in which no data is transmitted. This pause is for example

required for the implementation of the distributed clock synchronization mechanism.

106 Platform-Specific Adaptations for FlexRay

The static segment is divided into equally sized static slots which are statically

assigned to specific nodes in the cluster for sending and thus guarantees

uninterrupted transmission. The optional dynamic segment also has a static size, but

it is dynamically allocated to different nodes upon runtime. This is accomplished via a

priority mechanism using so-called minislots, which partition the dynamic part and

act as small placeholders which are enlarged at runtime when the node assigned to

them transmits data. This means that for minislots at the end of the dynamic

segment, i.e. those with the lowest priority, there might not always be enough space

for their transmission if a lot of higher priority minislots are used. The size of the

dynamic segment and the maximum data size allowed to be transferred determine

how many minislots are guaranteed to be usable for data transmission in every

cycle.

Every FlexRay cluster provides two separate communication channels which share

the same basic layout concerning the size of the static and dynamic segment.

However, individual slots can either be used simultaneously to increase fault

tolerance or independently, also by different nodes, to increase data throughput.

Furthermore, FlexRay implements a distributed clock synchronization protocol which

ensures that all nodes agree on a global cluster time. To accomplish this, all nodes in

the cluster measure the difference of their local clock to the clocks of 2 to 15

designated sync nodes. Those nodes transmit a specified sync frame on both FlexRay

channels. Out of the measured difference every node calculates offset and rate

correction values which are subsequently applied so that all clocks in the system stay

in sync.

The FlexRay protocol is typically implemented on dedicated communication

controllers which autonomously handle the transmission of data via the bus. They

are configured with a set of global cluster parameters and local node parameters

which completely specify the FlexRay network communication behavior. A FlexRay

controller handles all network tasks including startup and time synchronization and

provides message buffers as interface to the host CPU, which hold the data of

individual slots and minislots to be transmitted and received. The FlexRay

specification [39] describes the FlexRay protocol in detail, including all configuration

parameters on cluster and node level and their constraints.

For the exchange of data describing a FlexRay cluster, i.e. all cluster and node

parameters, slot assignments and signal definitions, the FIBEX data format can be

used. FIBEX is an abbreviation for Field Bus Exchange and is an XML format designed

Flexray cycle period

Figure 32. FlexRay cycle layout

Static segment

Static slot 1 Minislot 1

Dynamic segment

Symbol window

NIT

Platform-Specific Adaptations for FlexRay 107

to describe information regarding message-oriented bus communication systems

such as CAN, LIN and FlexRay. It is commonly used in the automotive industry as it

simplifies the data exchange across tools from multiple manufacturers. The "FIBEX

Expert Group" consists of representatives of BMW, Bosch, Daimler-Chrysler,

Elektrobit, dSPACE, National Instruments and Vector Informatik, among others.

5.2. Hardware Platforms

This section presents the two FlexRay-based hardware platforms we use to

demonstrate the application of our code and schedule generation framework.

5.2.1. Node Renesas

The NODE<RENESAS> Starter Kit is a FlexRay prototyping package by DeComSys

(now Elektrobit) which we use in version R2.0.2. It contains two prototyping boards

with a Renesas M32C/85 host CPU featuring a 24 MHz clock, 2MB of RAM, and 2MB

of Flash memory, and a dedicated Bosch E-Ray FlexRay controller. Furthermore the

package consist of a USB programming interface and a software package including

the GNU C compiler, a linker and a make tool supporting the Renesas M32C CPU, a

simple operating system, and drivers for the FlexRay controller.

Figure 33 shows a typical Node Renesas hardware setup. Both nodes are connected

to the power supply at the front of the node and to the FlexRay bus via a connector

at the back panel. Analog I/O is connected via a connector at the back named "AIO".

We use analog outputs to visualize actuator output on an oscilloscope. The USB

programmer is connected to the blue socket at the front of the boards. The front

panel of the board also contains digital I/O in form of 4 LEDs and 4 buttons. Also at

Figure 33. Node Renesas hardware overview

http://www.decomsys.com/

108 Platform-Specific Adaptations for FlexRay

the front panel there is a RS232 serial port for debugging purposes.

The Node Renesas is shipped with a custom operating system called AES (Application

Execution System). It is an ANSI-C software library which enables executing

periodic, time-driven application tasks. AES is pre-runtime configurable and supports

synchronization with the FlexRay communication system. Its configuration describes

task executions by means of a dispatch table where every entry specifies a task

invocation time. Instead of the typical main() function which is normally the initial

entry point of a C program, AES uses three hooks for initialization, idling and

shutdown.

The following shows a complete sample configuration for AES which invokes the

function periodicTask() every 5ms by executing it twice within an application

period of 10ms. Note that all entities are mandatory for both single node and

distributed systems. The application cycle length skAES_ApplCycleLenUs is the

length of the dispatcher round, i.e. within this time the dispatch table is executed

exactly once. It can differ between nodes but always needs to be a 2n multiple of the

FlexRay cycle period.

static void periodicTask(void) {

 [...]

}

/* This task runs when there is no running time-triggered task. */

void skAES_ApplIdleTask (void) {}

/* This function is called at system start up */

void skAES_ApplInitHook (void) {}

/* This function is called when the system (skAES) shuts down. */

void skAES_ApplShutdownHook (skAES_ErrorType skAES_ErrNo) {}

/* AES dispatch table */

const skAES_TaskDescriptionType skAES_TaskDescription[] = {

 /* Offset in us, Run only if synchronized with cluster, Task function */

 {0U, SK_AES_FALSE, periodicTask},

 {5000U, SK_AES_FALSE, periodicTask}

};

/* Number of tasks in the dispatch table */

const uint8 skAES_NumberOfTasks = sizeof(skAES_TaskDescription) /

 sizeof(skAES_TaskDescription[0]);

/* Length of the application cycle */

const skAES_TimeType skAES_ApplCycleLenUs = 10000U;

/* FlexRay synchronization parameters */

const skAES_TimeType skAES_MaxDecreaseUs = 50U;

const skAES_TimeType skAES_MaxIncreaseUs = 50U;

const skAES_SyncModeType skAES_SyncMode = SK_AES_SYNCMODE_HARD;

In addition to the AES operating software, further libraries are provided by the Node

Renesas Starter Kit. The COMMSTACK FlexRay controller driver provides frame-based

access to FlexRay communication controllers. It requires corresponding COMMSTACK

configuration files which mainly contain FlexRay cluster and node parameters and

configuration of the FlexRay controller buffers. The OS Synchronization Handler

(OsSh) is used to synchronize the AES operating system to the time base of a

running FlexRay cluster and the Target Platform Infrastructure (skTPI) provides

access to basic hardware devices such as the front panel LEDs and buttons.

5.2.2. MicroAutoBox

The MicroAutoBox (see Figure 34) is a rapid prototyping platform by dSPACE which is

commonly used in the automotive industry. We used the model MicroAutoBox

1401/1505/1507. Its main processing unit is a Power PC 750 FX CPU running at 800

Platform-Specific Adaptations for FlexRay 109

Mhz and is equipped with 8 MB of RAM. It has a dedicated digital I/O subsystem

based on a Motorola 68336 microcontroller which is connected via a dual-port

memory with the master CPU. The MicroAutoBox has the following set of external

interfaces:

 4 parallel A/D converters multiplexed to 4 channels each with 12-bit resolution

and another 16 A/D channels with 10-bit resolution

 D/A conversion providing 8 D/A channels with 12-bit resolution

 Bit I/O unit providing 16-bit input, 10-bit output, and 16-bit input/output with

bitwise selectable direction

 Multiple PWM (pulse width modulation) inputs and outputs suitable for chassis

and engine control applications

 Interrupt handling providing 4 external hardware interrupts lines

 4 CAN controllers

 2 LIN controllers

 2 serial interfaces

 FlexRay support via 2 optional IP modules, providing 2 FlexRay channels each.

We equipped our MicroAutoBox with one dSPACE DS4330 IP Module containing

a PFR4300 FlexRay communication controller

As the MicroAutoBox is designed for rapid prototyping in the automotive context, it is

typically programmed by using a MATLAB/Simulink block set called the Real-Time

Interface (RTI) and subsequent code generation. However, it can also be

Figure 34. dSPACE MicroAutoBox

110 Platform-Specific Adaptations for FlexRay

programmed directly in C by using the interface of its real-time operating system

called the dSPACE Real-Time Kernel (RTKernel). It comprises functions for task

management, task scheduling, and interrupt handling. Furthermore, there is also a

documented API for all input/output devices and the FlexRay interface.

The MicroAutoBox is shipped with a build environment consisting of a C compiler by

Microtec and a make tool. Compiled binary files are sent to the MicroAutoBox via a

proprietary programming interface connected using a PCMCIA card. For that purpose,

dSPACE provides the ControlDesk utility.

5.3. TDL Comm Layer Framework Plug-Ins

The TDL Comm Layer framework described in section 3.3 requires platform-specific

plug-ins that are specific to a communication protocol and hardware platform. The

minimum required functionality consists of platform initialization code and the

sending and receiving of TDL Comm Layer buffers. Thus, the following three

functions, whose prototypes are already present in tdl_comm.h, must be

implemented in the file tdl_comm_<platform>.c:

void tdl_comm_init_platform(void);

void tdl_comm_receiveBuffer(int bufferIndex, int size);

void tdl_comm_sendBuffer(int bufferIndex, int size);

FlexRay controllers autonomously take care of frame transmission according to the

communication schedule specified by the controller configuration. Frame sending and

receiving therefore only requires copying data between the TDL Comm Layer buffers

and the FlexRay controller, which must to happen before or after the actual

transmission of the frame respectively. Another important issue is the

synchronization with the FlexRay bus, whose implementation differs among

platforms. Prototypes of such additional platform-specific functions must be added to

the tdl_comm_<platform>.h header file.

FlexRay Legacy Signal Access

In addition to the get and put methods implemented in the TDL Comm Layer

framework for handling TDL data types, we also add functionality to send and receive

non-TDL or legacy signals on the FlexRay bus. As those functions should be usable

by all FlexRay platforms, we put them in a separate file tdl_comm_flexray.c and

corresponding header file tdl_comm_flexray.h. The signature of the get and put

functions are as follows:

void tdl_comm_get<TDLType>Signal(int bufferIndex, int bitPosition, int

 size, char isBigEndian, tdl_<TDLType>char* data);

void tdl_comm_put<TDLType>Signal(int bufferIndex, int bitPosition, int

 size, char isBigEndian, tdl_<TDLType>char* data);

For every TDL type, which are boolean, char, byte, short, int, long, float, and

double, there are corresponding put and get methods to access legacy signals

transmitted on the FlexRay bus. The signals are identified by buffer index, bit

position, size and endianness. Those parameters can for example be read from a

FIBEX file describing an existing FlexRay cluster.

Node Renesas

The TDL Comm Layer framework plug-in for the Node Renesas is implemented in the

files tdl_comm_noderenesas.c and tdl_comm_noderenesas.h. The platform

initialization code configures the FlexRay controller and initializes the FlexRay

Platform-Specific Adaptations for FlexRay 111

synchronization handler. The Comm Layer buffer send and receive functions are

implemented by calling the FlexRay driver functions TDDLL_TxFrameByID and

TDDLL_RxFrameByID respectively. The following two specific elements are added to

the tdl_comm_noderenesas.h header file:

void tdl_comm_noderenesas_syncFlexRay(void);

The function tdl_comm_noderenesas_syncFlexRay must be called periodically at

runtime. It synchronizes the local clock of the AES operating system to the FlexRay

bus time by using the FlexRay synchronization handler supplied by DeComSys.

extern TDDLL_ConfigType* tdl_comm_noderenesas_commstackConfig;

This variable holds the FlexRay controller configuration that must be provided for the

FlexRay driver delivered with the Node Renesas prototyping kit.

MicroAutoBox

The files tdl_comm_mabx.c and tdl_comm_mabx.h implement the TDL Comm Layer

framework plug-in for the MicroAutoBox. For the purpose of synchronization of the

TDL Runtime System to the FlexRay bus, the plug-in provides two basic functions,

which are facilitated by the synchronization mechanism implemented in the

generated glue code for the MicroAutoBox platform:

char tdl_comm_mabx_getCommCycle(void)

ts_timestamp_type tdl_comm_mabx_getTS(void)

The first function returns the number of the current FlexRay communication cycle in

the range from 0 to 63 while the second returns a timestamp indicating the

beginning of the next FlexRay cycle. Both values are obtained by using the dSPACE

FlexRay API.

5.4. TDL:VisualDistributor Interfaces

Code generation for concrete platforms requires information on the deployment of

modules to nodes as well as additional platform-specific information, such as the

worst-case execution time (WCET) of tasks and the mapping of sensors and

actuators to specific hardware devices. In the TDL tool chain this data in managed by

the TDL:VisualDistributor tool, which has a graphical user interface but may also run

Figure 35. TDL:VisualDistributor property page example

112 Platform-Specific Adaptations for FlexRay

in batch mode. The tool acts as front-end to the code and schedule generation

framework and provides the Java interfaces described in this section which the node

and cluster platform plug-ins must implement so that they can access the data model

of the TDL:VisualDistributor. From this data model plug-ins can for example retrieve

the deployment of modules to nodes. Furthermore, the interfaces enable plug-ins to

provide custom, editable properties. Figure 35 depicts an example for such a custom

property page for configuring the input device of a sensor of a module placed on a

specific node.

Figure 36 shows a UML diagram of the TDL:VisualDistributor data model which is

used to describe the topology of a TDL system. It consists of six classes which all

extend the DistributorObject class. The classes DistributorCluster,

DistributorNode, and DistributorModule represent a communication cluster, a

node, and a TDL module respectively. A Placement assigns a module to a node, a

Sender indicates on which cluster a placement sends and a Connection links a node

to a cluster.

The interface PropertiesProvider (see Figure 37) is implemented by node and

cluster platform classes in order to provide property pages specific to particular

distributor objects. A PropertyPage essentially is a table with two columns,

containing the name of the property on the left and the value of the property on the

right. It extends the Java Swing class AbstractTableModel which provides a table

model to a JTable. The value of the property can be represented by various Java

Swing elements, such as a text field, a drop down box or a file chooser. In order to

obtain property pages for elements of its data model, the TDL:VisualDistributor calls

the function getPropertyPages() for every DistributorObject:

public PropertyPage[] getPropertyPages(DistributorObject dob,

 PropertyPage[] base)

Individual platforms then either directly return the existing PropertyPage array base

if they do not add any property pages or add or modify PropertyPage objects which

are then displayed as part of the TDL:VisualDistributor's user interface associated

with the specific DistributorObject dob.

DistributorCluster

Figure 36. TDL:VisualDistributor data model classes

DistributorNode DistributorModule

Connection

Sender

Placement

Platform-Specific Adaptations for FlexRay 113

The interface DistributorNodePlatform (see Figure 37) serves to associate a

platform plug-in to a node in the distributor model. It extends the interfaces

NodePlatform and PropertiesProvider and adds a set and get a method for a

DistributorNode object.

In a similar way, the interface DistributorClusterPlatform (see Figure 37) links a

cluster platform and Comm Scheduler Plug-in to a cluster in the distributor data

model. For that purpose, it extends the interfaces ClusterPlatform,

CommSchedulerPlugin and PropertiesProvider. Furthermore, it provides set and

get methods for a DistributorCluster object.

<<interface>>

DistributorNodePlatform

NodeRenesas-

Platform

Embedded-

CPlatform

Figure 38. Prototyping hardware node platforms

MicroAutoBox-

Platform

<<interface>>

DistributorNodePlatform

<<interface>>

PropertiesProvider

Figure 37. TDL:VisualDistributor interfaces

<<interface>>

NodePlatform

<<interface>>

DistributorClusterPlatform

<<interface>>

ClusterPlatform

<<interface>>

CommSchedulerPlugin

setDistributorCluster(cluster: DistributorCluster)

getDistributorCluster(): DistributorCluster

setDistributorNode(node: DistributorNode)

getDistributorNode(): DistributorNode

114 Platform-Specific Adaptations for FlexRay

5.5. Node Platform Plug-Ins

This section details the platform-specific code generation for the Node Renesas and

the MicroAutoBox. It focuses on standalone or single node systems, i.e. on how TDL

modules are executed on these platforms without taking distribution into account.

Support for distribution is added using communication layer implementations for

FlexRay, which we describe in the next section.

Figure 38 shows a UML class diagram depicting the NodeRenesasPlatform and

MicroAutoBoxPlatform plug-ins we developed for our prototyping hardware

platforms. As both platforms are programmed in C, the plug-ins are based on the

class EmbeddedCPlatform which we introduced in chapter 1. The interface

DistributorNodePlatform links the plug-ins to the TDL:VisualDistributor so that

they can query its data model and provide user-editable properties.

The plug-ins are tailored to the concrete hardware platforms including their operating

systems, compilation environments and input/output device drivers. The generated

code must guarantee that synchronous activities are carried out as specified by TDL

modules. Concerning asynchronous activities, it depends on the platform and

especially on its operating system how and to what extent asynchronous activities

can be implemented. For example, not every platform supports hardware interrupts.

In this chapter we again use the producer-consumer example with synchronous and

asynchronous producer and consumer modules as introduced in 4.2. For Node1 we

generate code using the MicroAutoBox plug-in and for Node2 using the Node Renesas

plug-in.

5.5.1. Node Renesas Platform

The class NodeRenesasPlatform extends EmbeddedCPlatform and adds all elements

required to run TDL applications on the Node Renesas prototyping platform. It

generates only code which is independent of the concrete CommLayer associated with

it. NodeRenesasPlatform implements the DistributorNodePlatform interface that

enables it to provide user editable properties to the TDL:VisualDistributor and to

access its data model. For that purpose, it provides three property pages via the

getPropertyPages() function of PropertiesProvider which are linked to a

Placement. These are NodeRenesasInputPropertyPage for the assignment of input

devices to TDL module sensors, NodeRenesasOutputPropertyPage for the

assignment of output devices to TDL actuators and NodeRenesasBuildPropertyPage

for build options as the location of the functionality code source directory.

Furthermore, NodeRenesasNodePropertyPage (see Figure 39) is linked to a

DistributorNode and provides properties such the install location of the Node

Renesas Starter Kit.

In order to meet constraints concerning the application cycle length of the AES

operating system, the method getStepPeriod(), introduced in EmbeddedCPlatform,

is overridden. The function is used as input for the task scheduler and calculates the

step period of the TDL Machine, i.e. the period in which it must be invoked so that it

can fulfill the timing requirements of the modules mapped to a node. For distributed

systems involving a Node Renesas, the AES application cycle length must be a 2n

multiple of the FlexRay cycle period of the system. Furthermore, the application

period must be an integer multiple of the step period so that the TDL Machine can be

invoked using one or multiple entries in the AES dispatch table, which specifies all

task invocations within one application cycle.

Platform-Specific Adaptations for FlexRay 115

Unfortunately, there is no documented interface in the Node Renesas' AES operating

system to access the CPU's interrupt lines. As a result, this trigger mechanism for

asynchronous activities is not available. The plug-in checks this limitation and yields

an error message when a TDL module contains an interrupt trigger and is deployed

on a Node Renesas platform.

C Module Body File

 Includes (emitC_Includes())

Node2/Receiver_.c

#include <AnalogIO.h>

#include <skTPI.h>

Includes for skTPI.h and AnalogIO.h are added if they are required by the

emitted hardware drivers.

 Hardware drivers (emitC_DeviceDrivers())

Node2/Receiver_.c

static void Receiver_setDisplay(tdl_int Receiver_display) {

 AnalogIO_set(0, Receiver_display);

}

Via the TDL:VisualDistributor the NodeRenesasPlatform provides the ability to

assign sensors and actuators to concrete hardware components and I/O pins.

Figure 40 shows the dialog used to map a TDL actuator to an output device.

The available hardware consists of the 4 LEDs and 4 buttons on the front panel

Figure 39. Node Renesas node property page

Figure 40. Node Renesas platform output device mapping dialog

116 Platform-Specific Adaptations for FlexRay

of the Node Renesas and back panel pins for 8-bit analog in- and output.

Depending on the selected mapping the appropriate code is generated in the C

module body file from which the emitted functions are also called by the driver

code emitted by CPlatform.

C Main Body File

 Includes (emitMainC_Includes())

Node2/tdl_main_.c

#include <AnalogIO.h>

#include <skTPI.h>

The added includes consist of an AES header file (skAES.h) and headers

required for one-time initializations of hardware drivers (AnalogIO.h).

 Timer trigger for asynchronous activities

(emitMainC_AsyncTimerFunctions())

Unfortunately, AES provides no access to the CPU timer. As an approximation,

we implemented the timer trigger so that it is activated after a certain number

of TDL Machine invocations. This corresponds to the semantic of the timer

trigger to be activated after at least the specified time. We emit a function

handleAsyncTimers(void) which is called every step period and maintains an

individual counter for each timer period. When a timer expires, it is reset and

the corresponding tdl_async_enqueue() function is called.

 Periodic task (emitMainC_PeriodicTask())

The periodic task (static void periodicTask()) is the function that is called

periodically once per step period, i.e. the GCD of all periodic actions the TDL

Machine needs to perform. The body of the periodic task function is emitted by

a NodeRenesasCommLayer hook as it depends on whether distribution is

required or not. In the single node case, the periodic task consists of calling

the TDL Machine step function and of the handleAsyncTimers() function just

described above.

 AES operating system hook functions (emitMainC_AESFunctions())

Node2/tdl_main_.c

void skAES_ApplIdleTask (void) {

 for (;;) {

 int index = tdl_async_dequeue();

 if (index >= 0) {

 executeAsyncSequence(index);

 }

 }

}

void skAES_ApplInitHook (void) {

 AnalogIO_init(); /* Initializes sensor/actuator io. */

 tdl_comm_noderenesas_commstackConfig = &TDDLL_Config_Node2_MCU;

 tdl_comm_init(&commConfig);

 tdl_async_init(asyncs, 1); /* asyncs, nofAsyncs */

 tdl_machine_init(&modules[0], 4, 5000); //modules, nofModules, partitionPeriod

}

void skAES_ApplShutdownHook (skAES_ErrorType skAES_ErrNo) {

}

The AES operating system provides no support for task preemptions or task

priorities. However, it does have a so-called idle task which is specified by

Platform-Specific Adaptations for FlexRay 117

implementing the hook function skAES_ApplIdleTask. The idle task runs when

no time-triggered task is running. It is therefore suitable to execute

asynchronous TDL activity sequences as its priority is lower than that of the

TDL Machine, which is implemented as a time-triggered task inside the

dispatch table. The idle task simply has to poll the priority queue in an endless

loop and execute the corresponding activity when it is set active in the queue.

The initialization of the TDL Runtime System and optional hardware drivers is

ensured by using the AES initialization hook skAES_ApplInitHook.

 AES operating system configuration constants (emitMainC_AESConstants())

Node2/tdl_main_.c

const skAES_TaskDescriptionType skAES_TaskDescription[] = {

 /* Offset in us, Requires synchronous CS, Task function */

 {0U, SK_AES_FALSE, periodicTask},

 {5000U, SK_AES_FALSE, periodicTask},

};

const uint8 skAES_NumberOfTasks =

 sizeof(skAES_TaskDescription) / sizeof(skAES_TaskDescription[0]);

const skAES_TimeType skAES_ApplCycleLenUs = 10000U;

const skAES_TimeType skAES_MaxDecreaseUs = 50U;

const skAES_TimeType skAES_MaxIncreaseUs = 50U;

const skAES_SyncModeType skAES_SyncMode = SK_AES_SYNCMODE_HARD;

The AES operating system runs periodic tasks by use of a sequential dispatch

table. The plug-in emits a dispatch table that invokes the periodicTask and

therefore the TDL Machine exactly every step period.

Make File

For every node a make file is emitted via the method emitMake_Content(). It uses

generic make files provided by DeComSys for the Node Renesas and its AES

operating system. The make file ensures that the whole collection of C code, which

includes the module functionality code, module and stub module glue code, and the

TDL Runtime System code, is compiled and linked correctly.

Node2/Makefile

ROOT ?= C:\RenesasStarterKit\ESW

DESTDIR = C:\Example

TARGET_APP += \

 Node2 \

CUSTOM_CFLAGS = -DPLATFORM_RENESAS -DTDL_DISPATCHED

CUSTOM_CFLAGS += -DTDL_DISTRIBUTED

REQUIRED_COMPONENTS += \

 $(ROOT)/SWP/Types \

 $(ROOT)/SWP/dcsCstFr \

 $(ROOT)/SWP/skTPI \

 $(ROOT)/SWP/skAES \

 $(ROOT)/SWP/OsSh \

 $(ROOT)/SWP/FrSh \

INCLUDE_DIRS += \

SOURCE_DIRS += \

 $(DESTDIR)/Nodes/Node2 \

include $(ROOT)/BuildFiles/arch_common/Makefile_base.mak

5.5.2. MicroAutoBox Platform

118 Platform-Specific Adaptations for FlexRay

The class MicroAutoBoxPlatform implements single-node code generation for the

MicroAutoBox 1401/1505/1507 hardware. Through the DistributorNodePlatform

interface it provides three property pages which are linked to a Placement, i.e. a

module assigned to a node. These are MABXInputPropertyPage for the assignment

of input devices to TDL sensors, MABXOutputPropertyPage for the assignment of

output devices to TDL actuators and MABXBuildPropertyPage for build options such

as the location of the module's functionality code. Furthermore, two property pages

are linked to a DistributorNode: MABXNodePropertyPage provides options such as

include and source directories and MABXInterruptsPropertyPage enables the user to

assign the logical interrupt names in TDL modules to the hardware interrupt lines of

the MicroAutoBox. See Figure 41 for a TDL:VisualDistributor screenshot depicting

how to assign an interrupt line to the INT0 interrupt used in the AsyncSender module

of the producer-consumer example.

The features of the MicroAutoBox operating system are sufficient to implement

asynchronous activities and all corresponding trigger types in a straightforward way.

The execution of asynchronous activities is performed by a low priority task. The

MicroAutoBox has a number of hardware interrupt lines which can be configured to

be used as interrupt triggers for asynchronous activities. For timer triggers,

individual tasks are scheduled with the corresponding timer period which call the

enqueue function.

Unfortunately, the Microtec C compiler does not support the TDL type long. To check

if a TDL module uses this type, we override a method of CPlatform which returns

the C identifier of a TDL type. Before the overridden method returns the identifier via

a super call, it aborts the whole code generation process by throwing an exception

when it encounters the TDL type long. This example illustrates how the repeated

subclassing approach employed by the code generation framework enables

subclasses to influence the process according to specific requirements.

C Body File

 Includes (emitC_Includes())

Node1/Sender_.c

#include <Brtenv.h>

Includes are added that are required for the hardware drivers (see below). The

header file Brtenv.h, which stands for Base Real Time Environment, includes

all further include files related to the MicroAutoBox platform.

Figure 41. TDL:VisualDistributor interrupt assignment

Platform-Specific Adaptations for FlexRay 119

 Hardware drivers (emitC_DeviceDrivers())

Node1/Sender_.c

/* Device variables */

extern Int32 cTableIdx_1_2_get;

static UInt8 dioValue_1_2;

static unsigned long dioStep_1_2;

/* Getter and setter functions */

static void Sender_setDisplay(tdl_int Sender_display) {

 dac_tp1_write(DAC_TP1_1_MODULE_ADDR, 1, Sender_display);

}

static void Sender_getSwitch(tdl_boolean* Sender_switch) {

 if (dioStep_1_2 != tdl_machine_stepCounter) {

 dioStep_1_2 = tdl_machine_stepCounter;

 dio_tp1_bit_io_get_request(DIO_TP1_1_MODULE_ADDR, 0, cTableIdx_1_2_get);

 dio_tp1_bit_io_get(DIO_TP1_1_MODULE_ADDR, 0, cTableIdx_1_2_get,

 &dioValue_1_2);

 }

 *Sender_switch = 1-((dioValue_1_2 >> 0) & 1);

}

MicroAutoBoxPlatform provides property pages to the TDL:VisualDistributor

to configure the mapping of sensors and actuators of TDL module to actual

hardware devices. Figure 42 depicts the dialog for input device mapping. The

specified settings result in the generated code above for Sender_getSwitch()

in the module glue code file.

Main file

 Includes (emitMainC_Includes())

Node1/tdl_main_.c

#include <Brtenv.h>

#include <rtkernel.h>

The included headers consist of the base include file of the MicroAutoBox

libraries, Brtenv.h, and the header file of the RTKernel, rtkernel.h, which

contains operating system functions for task scheduling and interrupt

configuration.

 Timer trigger for asynchronous activities

(emitMainC_AsyncTimerFunctions())

For every distinct period of timer triggers for asynchronous activities, a static

function timer<period>() is emitted. In the main function every such function

is then scheduled separately using the required period.

Figure 42. MicroAutoBox platform input device mapping dialog

120 Platform-Specific Adaptations for FlexRay

 Periodic task (emitMainC_PeriodicTask())

The periodic task (static void periodicTask(rtk_p_task_control_block

pTCB)) is the function that is called periodically every step period. The step

period equals to the GCD of all periodic actions the TDL Machine must perform.

In order to match the signature required for task functions by the RTKernel,

the periodic task has a task control block as argument. The body of the

periodic task function is emitted by a MicroAutoBoxCommLayer hook, as it

depends on whether distribution is required or not. In the single node case, it

only consists of calling the TDL Machine step function.

 Main function (emitMainC_Main())

Node1/tdl_main_.c

void main(void) {

 init();

 dac_tp1_init(DAC_TP1_1_MODULE_ADDR);

 dio_tp1_com_init(DIO_TP1_1_MODULE_ADDR, DIO_TP1_EC_STD_MODE);

 dio_tp1_bit_io_init(DIO_TP1_1_MODULE_ADDR, 0, 2, DIRMASK_1_2, 0);

 dio_tp1_bit_io_get_register(DIO_TP1_1_MODULE_ADDR, 0, &cTableIdx_1_2_get, 2);

 tdl_comm_init(&commConfig);

 tdl_async_init(asyncs, 1); /* asyncs, nofAsyncs */

 tdl_machine_init(&modules[0], 2, 5000); //modules, nofModules, partitionPeriod

 rtk_initialize();

 {

 rtk_p_task_control_block periodicTaskTCB;

 rtk_p_task_control_block syncTaskTCB;

 lastTSmit = -100;

 periodicTaskTCB = rtk_create_task(periodicTaskWrapper, 2, ovc_count,

 NULL, INT_MAX, 0);

 rtk_bind_interrupt(S_INTERVAL_A, 0, periodicTaskTCB, 0.0f, C_LOCAL,0, NULL);

 rtk_set_task_type(S_INTERVAL_A, 0,RTK_NO_SINT,rtk_tt_periodic,NULL,0.0f, 1);

 syncTaskTCB = rtk_create_task(syncTask, 50, ovc_count, NULL, INT_MAX, 0);

 rtk_bind_interrupt(S_INTERVAL_A, 1, syncTaskTCB, 0.0f, C_LOCAL, 0, NULL);

 rtk_set_task_type(S_INTERVAL_A, 1,RTK_NO_SINT,rtk_tt_periodic,NULL,0.0f, 1);

 rtk_it_task_register_rel(S_INTERVAL_A, 1, RTK_NO_SINT,0.0f,0,0.0050f, NULL);

 }

 ds1401_set_interrupt_vector(DS1401_IR4, handleInterruptINT0, SAVE_REGS_ON);

 ds1401_enable_hardware_int(DS1401_IR4);

 DS1401_GLOBAL_INTERRUPT_ENABLE();

 rtk_enable_services();

 while(1) {

 int index = tdl_async_dequeue();

 RTLIB_BACKGROUND_SERVICE();

 if (index >= 0) {

 executeAsyncSequence(index);

 }

 }

}

The MicroAutoBox operating system requires a function void main(void),

which is executed upon startup. It consists of various initialization calls and

concludes with an endless loop handling the execution of asynchronous

activities.

The first block of code initializes the RTKernel (init() and

rtk_initialize()), the input/output devices required by the modules of a

node and the different parts of the TDL Runtime System.

The next block defines and schedules numerous periodic tasks. To invoke the

TDL Runtime System periodically, the periodicTask is scheduled every step

period. For distributed FlexRay systems, the communication layer (see below)

Platform-Specific Adaptations for FlexRay 121

adds a periodic syncTask which handles the synchronization of the local clock

to the FlexRay bus clock. Furthermore, every generated asynchronous timer

trigger task (timer<period>()) is scheduled according to its trigger period.

The block that follows assigns logical TDL interrupts to hardware interrupt lines

of the MicroAutoBox according to the corresponding setting in the

TDL:VisualDistributor. In the code example above, the logical interrupt INT0,

for which the CPlatform class already created a handleInterruptINT0()

function, is mapped to the hardware interrupt line DS1401_IR4.

As the main function runs at the lowest priority and is preempted by all other

tasks, it is a natural choice for executing asynchronous activities. Therefore an

endless loop is emitted at the bottom of the main function which constantly

polls for pending asynchronous activities and executes them when necessary.

Make File

Node1/Node1.mk

APPL = Node1

DESTDIR = C:\Example

SRC_FILES = tdl_machine.c \

 tdl_async.c \

 tdl_main_.c \

 AsyncSender.c \

 AsyncSender_.c \

 Sender.c \

 Sender_.c \

CC_FLAGS = -DPLATFORM_MABX -DTDL_DISPATCHED

SRC_FILES += tdl_comm.c tdl_comm_flexray.c tdl_comm_mabx.c

CC_FLAGS += -DTDL_DISTRIBUTED

.PATH.c = .; \

LIB_FILES = $(DSPACE_ROOT)\ds1401\RTKernel\Rtk1401.lib

C_INC_PATH = -J$(DSPACE_ROOT)\ds1401\RTKernel \

 -J$(DSPACE_ROOT)\MATLAB\RTIFLEXRAYCONFIG\FlexRayAL \

BOARD_TYPE = DS1401

BOARD_DIR = ds1401\RTLib

OBJ_EXT_C = o03

LIB_FILES := $(LIB_FILES) $(DSPACE_ROOT)\$(BOARD_DIR)\$(BOARD_TYPE).lib

$(PPC_ROOT)\lib\mppcb.lib

C_INC_PATH := -J. -J$(DSPACE_ROOT)\$(BOARD_DIR) -J$(PPC_ROOT)\include $(C_INC_PATH)

CC_FLAGS := $(CC_FLAGS) -c -p603e -zc -KE $(C_INC_PATH) -D_$(BOARD_TYPE,UC) -QmwC0223

-QmiC0001 -D_INLINE -O5

LD_FLAGS = -Q i -m>$(APPL).map -o$(APPL).ppc

LK_FILE = $(DSPACE_ROOT)\$(BOARD_DIR)\$(BOARD_TYPE).lk

OBJ_FILES = $(SRC_FILES,S'\.c$$'.$(OBJ_EXT_C)')

build : startup $(APPL).ppc cleanup

startup :

 echo building application "$(APPL)" ...

 echo using local makefile "$(INPUTFILE)" ...

 %if "$(prg_dir)" != ""

 %chdir $(PRG_DIR)

 %endif

 %foreach x in $(OBJ_FILES)

 if exist $(x,R).$(OBJ_EXT_C) del $(x,R).$(OBJ_EXT_C)

 %endfor

cleanup :

 %foreach x in $(OBJ_FILES)

122 Platform-Specific Adaptations for FlexRay

 if exist $(x,R).$(OBJ_EXT_C) del $(x,R).$(OBJ_EXT_C)

 %endfor

 echo application successfully built

$(APPL).ppc: $(OBJ_FILES)

 echo linking object modules

 *lnkppc -c $(LK_FILE) $(LD_FLAGS) $(OBJ_FILES) $(LIB_FILES)

%.$(OBJ_EXT_C) : %.c

 echo compiling $<

 echo *mccppc $(CC_FLAGS) -o $@ $<

 *mccppc $(CC_FLAGS) -o $@ $<

The function emitMake_Content() emits a make file which is compatible to the make

tool shipped with the MicroAutoBox. It ensures that all source code files are compiled

and linked correctly.

5.6. FlexRay Implementation

This section describes the Node Renesas and MicroAutoBox communication layers

and the Comm Scheduler Plug-In for FlexRay. Before going into detail in the

subsequent subsections, we introduce a number of base classes (see Figure 43)

which are used by all FlexRay-related classes.

The class FlexrayProperties extends the abstract class CommProperties and is

provided by the Comm Scheduler Plug-In for FlexRay (FlexrayPlatform) to the

Comm Scheduler for cluster scheduling (see 4.3). In addition to the functionality

required for scheduling purposes by the Comm Scheduler, it implements all FlexRay

constraints according by the FlexRay specification [39]. Furthermore, it is able to

calculate all cluster and node properties of a system out of a small set of base

properties, which are the cycle length, the static slot size and the size of the dynamic

segment. This functionality is intended for rapid prototyping for which it is desirable

to quickly produce a working FlexRay system. It is also possible to set all parameters

manually. In this case, the FlexrayProperties class checks whether all protocol

constraints are fulfilled.

Closely related to the FlexrayProperties class is the FlexrayNodeProperties

class, which stores all node-level FlexRay parameters. For each FlexRay node in the

system one instance of this class exists. A reference to each of them is stored in a

field of FlexrayProperties.

The abstract class FlexrayCC represents a generic FlexRay communication controller.

Concrete controllers differ in regard of the encoding of FlexRay cluster and node

properties and in the handling of communication buffers. However, they also share

common features implemented in FlexrayCC such as the calculation of the CRC

(cyclic redundancy check) for frame headers and generic buffer management

functions. FlexrayCC obtains the FlexRay configuration parameters from the

FlexrayProperties and FlexrayNodeProperties class instances.

For the two different FlexRay prototyping platforms we provide two FlexrayCC

implementations, namely BoschERay for the Node Renesas and MFR4300 for the

MicroAutoBox. The node platform plug-ins facilitate these classes via their

communication layers NodeRenesasFlexrayCommLayer and MicroAutoBoxFlexray-

CommLayer respectively.

Platform-Specific Adaptations for FlexRay 123

5.6.1. FlexRay Communication Layer

StandardEmbeddedCCommLayer (see 4.2.4) implements basic communication

functionality regarding the transportation of TDL port values across the network and

is independent of concrete communication platforms. A class implementing

FlexrayCommLayer then adds code which is specific to the FlexRay communication

protocol but still independent of the concrete FlexRay controller used. The interface

has two implementations in analogy to other CommLayer implementations:

StandaloneFlexrayCommLayer and StandardFlexrayCommLayer. It has no

associated node platform plug-in and only comprises common features needed by all

FlexRay-based CommLayers.

Closely related to FlexrayCommLayer is the class FlexrayCC, which implements the

basic functionality of a FlexRay communication controller. It uses a data structure

called CCBuffer representing a single FlexRay controller buffer. Such buffers are

FlexrayProperties

NodeRenesas-
Platform

FlexrayCC

Figure 43. FlexRay-related classes

MicroAutoBox-
Platform

BoschERay MFR4300

FlexrayNodeProperties

CommProperties

FlexrayNodeRenesas-

CommLayer

FlexrayMicroAutoBox-

CommLayer

FlexrayPlatform

124 Platform-Specific Adaptations for FlexRay

used to store the contents of static and dynamic slots before sending and after

reception. FlexRay parameters on cluster and node level are accessed by using the

FlexrayProperties and FlexrayNodeProperties class respectively. Both property

class instances as well as a list of buffers are passed to FlexrayCC in its constructor:

public FlexrayCC(FlexrayProperties flexProps,

 FlexrayNodeProperties flexNodeProps,

 List<CCBuffer> buffers)

While buffers for synchronous and asynchronous frames required by a TDL system

are already passed with this constructor, additional buffers may be required to

exchange data with legacy components connected to the same FlexRay bus. For that

purpose, FlexrayCC provides the following function to allocate additional

communication controller buffers:

int requestBuffer(boolean isSendBuffer, int channel, int slot, int

cycleRepetition, int baseCycle, int size);

This method is used to request a communication controller buffer with the specified

type, FlexRay channel, slot, cycle repetition, base cycle and size parameters. The

number of the buffer is returned, which might be a newly allocated buffer or an

already allocated one that can be reused in case all its parameters match.

The class StandardFlexrayCommLayer implements FlexrayCommLayer but is still an

abstract class. The following three functions depend on the concrete FlexRay

communication controller used and therefore must be implemented by its subclasses:

FlexrayCC getFlexrayCC()

String getBufferNumber(CommSchedule.CommFrame frame)

String getAsyncBufferNumber(CommSchedule.CommAsyncFrame asyncFrame)

The first method returns a concrete implementation of a FlexRay communication

controller. The next two methods return the FlexRay communication controller buffer

identifier according to the specified synchronous or asynchronous frame.

StandardFlexrayCommLayer implements the following functionality common to all

platforms connected to a FlexRay network:

 FlexRay signal call (flexrayCall())

Generates a function call that sends or receives a FlexRay signal using the

tdl_comm_set<TDLType>Signal() or tdl_comm_get<TDLType>Signal()

functions in tdl_comm_flexray.h, which is the FlexRay-specific part of the TDL

Comm Layer framework (see 5.3). The function is used to generate

functionality code for TDL sensors and actuators in the module glue code file

which accesses legacy FlexRay signals. For that purpose, a buffer in the

FlexRay communication controller is configured using the requestCCBuffer()

function of FlexrayCC so that the a specific signal can be sent or received.

 FlexRay communication controller buffer allocation (getBuffers())

This function allocates FlexRay controller buffers for all synchronous and

asynchronous TDL frames based on the Comm Schedule data structure. It

returns a list of buffers of type FlexrayCC.CCBuffer and is used to instantiate

a concrete FlexrayCC instance.

 Synchronized TDL startup (emitMainC_syncTDL())

Node1/tdl_main_.c (Node1 is startup master)

static char sendInitValues(char readyToGo) {

 if (readyToGo) {

Platform-Specific Adaptations for FlexRay 125

 buffers[2][0] = 0xEE;

 } else {

 buffers[2][0] = 0x00;

 }

 tdl_comm_sendBuffer(2, 1);

 return 1;

}

static char receiveInitValues(void) {

 return 1;

}

static char receiveReadyToGos(void) {

 tdl_comm_receiveBuffer(0, 1);

 return 1 && (buffers[0][0] == 0xEE);

}

static char syncTDL = 0; // true if all TDL machines are in sync

static char readyToGo = 0;

static char isSyncTDL(void) {

 if (syncTDL==0) {

 if (!readyToGo) {

 readyToGo = receiveInitValues();

 return 0;

 }

 if (readyToGo) {

 syncTDL=receiveReadyToGos();

 sendInitValues(syncTDL);

 return 0;

 }

 }

 return syncTDL;

}

Node2/tdl_main_.c (Node2 is startup slave)

static char sendInitValues(char readyToGo) {

 if (readyToGo) {

 buffers[TDDLL_LookupTxFrame(0, 3, TDDLL_CHA, 1, 0)][0] = 0xEE;

 } else {

 buffers[TDDLL_LookupTxFrame(0, 3, TDDLL_CHA, 1, 0)][0] = 0x00;

 }

 tdl_comm_sendBuffer(TDDLL_LookupTxFrame(0, 3, TDDLL_CHA, 1, 0), 1);

 return 1;

}

static char receiveInitValues(void) {

 return 1;

}

static char receiveStartNow(void) {

 char startNow;

 tdl_comm_receiveBuffer(TDDLL_LookupRxFrame(0, 194, TDDLL_CHA, 1, 0), 1);

 startNow = buffers[TDDLL_LookupRxFrame(0, 194, TDDLL_CHA, 1, 0)][0] == 0xEE;

 return startNow;

}

static char syncTDL = 0; // true if all TDL machines are in sync

static char readyToGo = 0;

static char isSyncTDL(void) {

 if (syncTDL==0) {

 if (!readyToGo) {

 readyToGo = receiveInitValues();

 sendInitValues(readyToGo);

 return 0;

 }

 if (readyToGo) {

 syncTDL=receiveStartNow();

 }

 if (!syncTDL) {

 sendInitValues(1);

 }

 }

126 Platform-Specific Adaptations for FlexRay

 return syncTDL;

}

StandardFlexrayCommLayer implements a simple startup protocol which is

emitted to the main file and guarantees that all nodes of a TDL system start

executing modules at the same time instant. This is necessary as it is possible

that not all nodes are powered up at the same time or that they have different

boot times. When generating code, an arbitrarily selected node is chosen to be

the master of the synchronization algorithm. All other nodes become slaves

and send a signal to the master when they are ready to start executing the

first TDL Machine step. If a node uses custom functions to initialize TDL ports,

these initialization values must be transferred before startup and only after

that the node can signal that it is ready to start. The master waits until it

receives ready signals from all nodes and then sends a signal to all of them

indicating to start module execution in the next FlexRay cycle.

 TDL Comm Layer framework buffers (emitMainC_FlexrayBuffers())

Node1/tdl_main_.c

tdl_char buffer0[1] = {0};

tdl_char buffer1[5] = {0};

tdl_char buffer2[5] = {0};

tdl_char buffer3[4] = {0};

tdl_char* buffers[] = {

 (tdl_char*) &buffer0,

 (tdl_char*) &buffer1,

 (tdl_char*) &buffer2,

 (tdl_char*) &buffer3,

};

As required by the TDL Comm Layer framework, the StandardFlexray-

CommLayer emits an array of buffers of type tdl_char. In order to save space

and an additional mapping of those buffers to the FlexRay controller buffers,

we map them one-to-one and order them according to the buffers configured

inside the FlexRay controller.

 TDL Comm Layer framework frame structures (emitMainC_FlexrayFrames())

Node1/tdl_main_.c

tdl_comm_FrameStruct frame0 = {0, 1, 0}; //buffer index, size, current position

tdl_comm_FrameStruct frame1 = {1, 5, 0}; //buffer index, size, current position

tdl_comm_FrameStruct frame2 = {2, 5, 0}; //buffer index, size, current position

tdl_comm_FrameStruct frame3 = {3, 4, 0}; //buffer index, size, current position

static tdl_comm_Frame frames[] = {

 &frame0,

 &frame1,

 &frame2,

 &frame3,

};

static tdl_comm_FrameEntry frameSendEntries[] = {

 {1, 4895},

 {2, 9842},

 {-1, -1},

};

static tdl_comm_FrameEntry frameReceiveEntries[] = {

 {0, 154},

 {-1, -1},

};

The TDL Comm Layer framework requires data structures describing

synchronous TDL frames. These structures are tdl_comm_FrameStruct

containing the buffer index, the frame size and the current position of the data

Platform-Specific Adaptations for FlexRay 127

pointer of the frame, an array of type tdl_comm_Frame containing all frames,

and finally two arrays of type tdl_comm_FrameEntry indicating the time frames

are sent or received respectively.

 TDL Comm Layer framework configuration (emitMainC_TDLCommConfig())

Node1/tdl_main_.c

tdl_comm_Config commConfig = {

 5000, /* partition period of the node */

 10000, /* bus period of the cluster */

 frames, /* pointer to frame array as defined above */

 3, /* number of synchronous frames */

 1, /* size of tag in bytes */

 frameSendEntries, /* pointer to frame send table as defined above */

 frameReceiveEntries, /* pointer to frame receive table as defined above */

 decodeMessage, /* pointer to message decoding function as defined above */

};

Finally, a struct of type tdl_comm_Config is generated which contains all

values and data structures the TDL Comm Layer framework must be initialized

with.

 TDL Comm Layer framework initialization (emitMainC_TDLCommInitCall())

For the initialization of the TDL Comm Layer framework, this hook function

emits a call to the TDL Comm layer init function with a reference parameter

pointing to the struct containing the TDL Comm layer configuration data.

 Periodic task (emitMainC_PeriodicTaskBody())

Node1/tdl_main_.c

static void periodicTask(rtk_p_task_control_block pTCB){

 if (isSyncTDL()) {

 tdl_comm_receiveFrames();

 receiveAsyncFrames();

 tdl_machine_step();

 }

}

A default body for the periodic task is emitted. In the distributed case, the TDL

Comm Layer framework function for the reception of synchronous frames

(tdl_comm_receiveFrames()) and the function emitted by

StandardCCommLayer for the reception of asynchronous frames

(receiveAsyncFrames()) must be called before the TDL Machine step function.

The first execution of these three functions is delayed until the startup

synchronization algorithm indicates that all nodes in the system are ready to

start execution.

128 Platform-Specific Adaptations for FlexRay

5.6.2. Node Renesas Communication Layer

The interface NodeRenesasCommLayer represents the communication layer interface

for the Node Renesas platform. We provide two implementing classes:

StandaloneNodeRenesasCommLayer and FlexrayNodeRenesasCommLayer (see Figure

44). The former only emits a periodic task suitable for a standalone system which

solely calls the TDL Machine step function. The latter however generates all the

appropriate code to configure and utilize the Bosch E-Ray FlexRay controller used in

the Node Renesas prototyping hardware.

FlexrayNodeRenesasCommLayer provides the following functionality:

 FlexRay controller buffer assignment (getBuffers())

This function is already implemented in FlexrayCommLayer but is overridden

by FlexrayNodeRenesasCommLayer as the Bosch E-Ray FlexRay controller

requires that the buffer with index 0 is assigned to a FlexRay key slot. This

implementation orders the buffers in a way so that this requirement is fulfilled.

Note that consequently also the TDL Comm Layer framework buffers must be

reordered, as there is a one-to-one mapping between them and the FlexRay

controller buffers.

 Application cycle length (getApplicationCycleLength())

The AES operating system of the Node Renesas requires that its application

cycle value is a 2n multiple of the FlexRay communication cycle period.

FlexrayNodeRenesasCommLayer calculates a suitable value so that this

requirement is met.

Embedded-
CPlatform

<<interface>>

Embedded-

CCommLayer

NodeRenesas-
Platform

<<interface>>

Flexray-

CommLayer

<<interface>>

NodeRenesas-
CommLayer FlexrayNodeRenesas-

CommLayer

StandaloneNodeRenesas-
CommLayer

Standalone-

FlexayCommLayer

Standard-

FlexrayCommLayer

Figure 44. Node Renesas communication layer class diagram

Platform-Specific Adaptations for FlexRay 129

 Configuration files for COMMSTACK FlexRay controller driver (emitCCFiles())

The communication layer emits configuration files which adhere to the

requirements of the Node Renesas COMMSTACK FlexRay controller driver. They

contain all cluster and node parameters and the configuration of the controller

buffers in an encoding suitable for the Bosch E-Ray FlexRay controller. The

emitted files comprise COMMSTACK_<nodeName>_Cfg.h, COMMSTACK

<nodeName>_Cfg.c and COMMSTACK_<nodeName>_Memory_Cfg.h.

 Main file includes (emitMainC_Includes())

Node2/tdl_main_.c

#include "tdl_comm_noderenesas.h"

#include <dcsCstFr.h>

#include "COMMSTACK_Node2_Cfg.h"

Includes are emitted for the platform-specific TDL Comm Layer plug-in

(tdl_comm_noderenesas.h), the DeComSys COMMSTACK FlexRay controller

driver (dcsCstFr.h) and the generated COMMSTACK configuration header file.

 Periodic task (emitMainC_PeriodicTaskBody())

Node2/tdl_main_.c

static void periodicTask(void) { // This task is called every partition period

 tdl_comm_noderenesas_syncFlexRay();

 if (isSyncTDL()) {

 tdl_comm_receiveFrames();

 receiveAsyncFrames();

 tdl_machine_step();

 }

}

FlexrayNodeRenesasCommLayer overrides the emitMainC_PeriodicTask-

Body() function to add a call to synchronize the FlexRay bus clock to the AES

clock (tdl_comm_noderenesas_syncFlexRay()). Furthermore, it adds a call to

handleAsyncTimers() inside the if clause that all timer triggers for

asynchronous activities are handled correctly.

 Makefile (emitMake_Content())

The compiler flag DISTRIBUTED is added. This flag configures the TDL Runtime

System for distribution.

5.6.3. MicroAutoBox Communication Layer

The communication layer interface for the MicroAutoBox platform,

MicroAutoBoxCommLayer, and its implementations are similar to those for the Node

Renesas. Again, two implementations exist: StandaloneMicroAutoBoxCommLayer for

single node systems and FlexrayMicroAutoBoxCommLayer for distributed FlexRay

systems. The differences to the Node Renesas version are adaptations to the

MicroAutoBox operating system and the use of another type of FlexRay controller.

The MFR4300 controller by Freescale requires a different configuration format and

buffer handling.

The following functionality is provided by FlexrayMicroAutoBoxCommLayer:

 Main file includes (emitMainC_Includes())

Node1/tdl_main_.c

#include "tdl_comm_mabx.h"

#include <dsfr1401.h>

130 Platform-Specific Adaptations for FlexRay

#include <dsfral.h>

The added include files for distributed systems are the platform-specific TDL

Comm Layer framework header tdl_comm_mabx.h and the MicroAutoBox

FlexRay driver headers dsfr1401.h and dsfral.h.

 FlexRay synchronization (emitMainC_TimingControlFunctions())

Node1/tdl_main_.c

static UInt32 lastTSmit;

static void syncTask(rtk_p_task_control_block pTCB){

 ts_timestamp_type ts, syncts;

 syncts = tdl_comm_mabx_getTS();

 if (syncts.mit + 10000 - lastTSmit > 2 * 10000) {

 rtk_it_task_register_rel(S_INTERVAL_A, 0, RTK_NO_SINT, 0.0f, 0,

 0.0, &syncts);

 rtk_it_task_register_rel(S_INTERVAL_A, 0, RTK_NO_SINT, 0.0050f, 0,

 0.0, &syncts);

 lastTSmit = syncts.mit;

 }

}

In a distributed system connected via a FlexRay bus it is essential that the

operating system is synchronized to the communication bus. On the

MicroAutoBox, this is done with the help of a sync task which is called twice as

often as the TDL Machine on a particular node. This over sampling ensures that

there is at least one invocation of the sync task in every FlexRay cycle. The

sync task calls a function of the dSPACE FlexRay API via

tdl_comm_mabx_getTS() to obtain the timestamp of the beginning of the next

FlexRay cycle. Subsequently, all TDL Machine steps inside the next cycle are

scheduled with the help of this timestamp using the function

rtk_it_task_register_rel(). The sync task only does this if the difference

to the last timestamp is over a certain threshold as otherwise all TDL Machine

steps would be scheduled multiple times in the next FlexRay cycle.

 FlexRay controller configuration (emitMainC_CCConfig())

Configuration for the MicroAutoBox FlexRay controller (MFR4300) needs to be

generated. It is stored in the tdl_main.c file in a function named Cfg_CTR0().

It uses the dSPACE FlexRay API to set the controller registers containing all

cluster and node parameters and the configuration for the communication

controller buffers.

 Makefile (emitMake_Content())

The compiler flag DISTRIBUTED is added. This flag configures the TDL Runtime

System for distribution.

5.6.4. Cluster Platform Plug-In

For a TDL FlexRay system to be able to exchange data between nodes, the abstract

scheduling data generated by the Comm Scheduler must be transformed to a

complete set of FlexRay parameters. For this purpose, the class FlexrayPlatform

combines the implementation of two interfaces as shown by Figure 45. It represents

a cluster platform plug-in in the context of the code generation framework (abstract

class AbstractClusterPlatform) and additionally acts as a scheduling plug-in to the

Comm Scheduler (interface CommSchedulerPlugin). Furthermore, it uses the

FlexrayProperties class for the calculation of FlexRay cluster and node parameters.

Platform-Specific Adaptations for FlexRay 131

FlexrayPlatform must implement the following scheduling functions as specified by

the CommSchedulerPlugin interface described in subsection 4.3.4. Table 10 lists all

interface functions and describes their implementation in FlexrayPlatform.

public CommProperties getCommProperties()

Returns a FlexrayProperties object which extends the

CommProperties class by FlexRay-specific functionality.

public int getCommPeriod(int mspGCD)

The returned communication period must be an integer

divider of mspGCD, which is the maximum possible

period calculated as the GCD of all mode periods and

mode switch periods of the sending modules of a

distributed TDL system. FlexRay has a restriction for the

maximum length of the cycle period of 16000

macroticks. A macrotick can be configured to last

between 1 and 6 µs. When the passed mspGCD is too

large to match the maximum length, it is divided by an

integer value so that the resulting cycle period is below

the limit.

public int getTagSize(int nofMsgs, int msgID)

Regarding the size of the message tag with respect to

the number of messages and the message ID,

FlexrayPlatform returns a size of 1 if the number of

messages is below 28 and a size of 2 if it is below 216.

For a higher number of messages it throws an exception.

Note that this calculation does not depend on the

message ID, i.e. the second parameter is ignored.

<<interface>>

DistributorClusterPlatform

FlexrayPlatform

AbstractCluster-
Platform

Figure 45. FlexrayPlatform class diagram

Flexray-
Properties

<<interface>>

CommSchedulerPlugin
CommProperties

132 Platform-Specific Adaptations for FlexRay

public Frame newFrame(int senderNodeID)

This factory method returns a new instance of the class

Frame, i.e. it uses the default frame class.

public AsyncFrame newAsyncFrame(ModuleReader.Task asyncTask)

This factory method returns a new instance of the class

AsyncFrame, i.e. it uses the default class for

asynchronous frames.

public int getMaxFrameSize()

Returns the maximum frame payload size according to

the corresponding property obtained from the

FlexrayProperties class.

public void setTiMap(Map<String, Map<String, Map<String,

 TaskInvocation[]>>> tiMap)

This method passes information about task invocations

to the plug-in. It is passed on to the CommLayer of the

individual nodes which are responsible for task schedule

generation.

public double scheduleFrameWindows(List<Frame> frameWindows)

This core function of the plug-in interface assigns

concrete timings, i.e. FlexRay slot numbers, to the list of

frame windows passed by the Comm Scheduler. The

assignment algorithm optimizes for minimal bandwidth

usage on the FlexRay bus. There is a trade-off between a

large static slot size that minimizes overhead but might

waste bandwidth by having small TDL frames occupy a

complete FlexRay slot and having a small static slot size

that introduces a large overhead as every slot introduces

additional overhead. The lower limit for the slot size is

the size of the largest frame as frames are not split

across multiple slots. The maximum slot size is bounded

by the maximum of 127 2-byte-words set in the FlexRay

specification.

The slot assignment algorithm works as follows: First the

frame windows obtained from the Comm Scheduler are

sorted by decreasing deadline time, i.e. the frame with

the latest deadline is first. Then for all slot sizes large

enough to hold the largest frame it is searched for a

valid frame to FlexRay slot mapping. This is done by

mapping every frame from the sorted list to the latest

FlexRay slot still available. Of all static slot sizes the one

which leads to a valid mapping and produces the FlexRay

schedule with minimal bandwidth usage is selected. As a

last step all frames in the supplied list are updated with

the start and end time of the assigned FlexRay slots.

For FlexRay startup, the protocol requires that either two

or three nodes are configured as so-called cold start

nodes. These nodes follow a special startup procedure

using the slots assigned to them to initialize the FlexRay

communication cycle. The slot assignment algorithm

ensures that these startup requirements are fulfilled.

Platform-Specific Adaptations for FlexRay 133

Whether a node is a cold start node or not is specified

via a property by the user. The plug-in checks the

number of cold start nodes in the cluster and

automatically assigns them a sending slot to be used for

startup frames.

The return value of the function indicates the quality of

the scheduling solution. It is calculated on basis of the

bandwidth used by the scheduled slots including

overhead, such as gaps between slots and unused parts

of slots. This way a schedule with unnecessary large

slots yields a lower metric then one with the same data

transferred in slots that are mostly filled to their size.

public void scheduleAsyncFrames(List<AsyncFrame> asyncFrames,

 List<Frame> frames)

This function performs the mapping of asynchronous

frames to communication protocol specific IDs which are

then stored in every AsyncFrame object. To ensure their

transmission via FlexRay, asynchronous frames must be

assigned to minislots of the dynamic segment and must

be sent and received at the correct time instants. We

require the user to specify the number of minislots and

thereby the size of the dynamic segment. The scheduling

algorithm then assigns every asynchronous frame to an

individual minislots in order of their priority, which is

indicated by the order of the passed list. As ID the

FlexRay minislot number is used. When no or not enough

minislots are available, we output a code generation

error and abort the generation process. The sending of

asynchronous frames, i.e. writing them to the

appropriate buffers of the FlexRay controller, is done as

soon as the ports originating from asynchronous tasks

are updated. Receiving is done right before the TDL

Machine runs, which is when also all synchronous frames

are received.

Table 10. Implementation of the CommSchedulerPlugin interface by

FlexrayPlatform

FlexrayPlatform provides user editable properties to the TDL:VisualDistributor via

the PropertiesProvider interface, which is part of the

DistributorClusterPlatform interface (see 5.4). For a Connection object of the

data model, representing a link between a DistributorNode and a

DistributorCluster node, a FlexrayNodePropertyPage is provided. It lets the user

determine whether a specific node is used for FlexRay startup and for clock

synchronization. Furthermore, for a DistributorCluster the class

FlexrayPropertyPage (see Figure 47) provides a minimal set of FlexRay properties

and options to import and export FIBEX files. The properties are required by the

automatic property calculation algorithm implemented in the FlexrayProperties

class.

134 Platform-Specific Adaptations for FlexRay

In addition, both property pages provided access to another dialog which we call the

FlexRay Property Editor (see Figure 46). It is used to view and edit every single

FlexRay node and cluster parameter. While the automatic parameter calculation of

the class FlexrayProperties is feasible for prototyping as it speeds up the

development process, for series production it may be required to alter parameters to

tailor them to specific requirements such as maximization of bus throughput or the

hardware used. The editor aids the user by checking the ranges and constraints of

every parameter and thereby prevents that an invalid set of parameters is

generated, which in almost all cases would lead to a non-functioning FlexRay system.

Figure 46. FlexRay Property Editor

Figure 47. FlexRay cluster property page

Platform-Specific Adaptations for FlexRay 135

The following depicts the Comm Schedule file which contains the complete

communication schedule of the producer-consumer example. It is written by the

Comm Scheduler as described in section 4.2. It contains the topology of the network,

the mapping of TDL modules to nodes and all details on the timing of synchronous

and asynchronous frames and what data is transferred by them.

FlexRay/commschedule.properties

The name of the cluster:

tdl.commschedule.clusterName = FlexRay

The period of the communication cycle in us:

tdl.commschedule.commPeriod = 10000

Network configuration:

tdl.commschedule.nodes = nofNodes

tdl.commschedule.nodes.i = nodeName

tdl.commschedule.nodes = 2

tdl.commschedule.nodes.0 = Node1

tdl.commschedule.nodes.1 = Node2

Module assignment:

tdl.commschedule.modules = nofModules

tdl.commschedule.modules.i = moduleName:key:nodeID

tdl.commschedule.modules = 4

tdl.commschedule.modules.0 = Sender:-1984218304:0

tdl.commschedule.modules.1 = AsyncSender:-1450699287:0

tdl.commschedule.modules.2 = Receiver:1793272030:1

tdl.commschedule.modules.3 = AsyncReceiver:616832004:1

The list of frames to be sent on the network:

tdl.commschedule.frames = nofFrames

tdl.commschedule.frames.i = senderNodeID:startTime:endTime:nofBytes

tdl.commschedule.frames.i.receivers = nofReceivers

tdl.commschedule.frames.i.receivers.j = receiverNodeID

tdl.commschedule.frames = 3

tdl.commschedule.frames.0 = 1:101:154:1

tdl.commschedule.frames.0.receivers = 1

tdl.commschedule.frames.0.receivers.0 = 0

tdl.commschedule.frames.1 = 0:4895:4948:5

tdl.commschedule.frames.1.receivers = 1

tdl.commschedule.frames.1.receivers.0 = 1

tdl.commschedule.frames.2 = 0:9842:9895:5

tdl.commschedule.frames.2.receivers = 1

tdl.commschedule.frames.2.receivers.0 = 1

The messages to be sent in frames:

tdl.commschedule.messages = nofMessages

tdl.commschedule.messages.i =

frameID:taskID:modeID:taskRelease:modePhaseNo:nofBytes:nofTagBytes

tdl.commschedule.messages = 2

tdl.commschedule.messages.0 = 1:0:1:0:0:4:1

tdl.commschedule.messages.1 = 2:0:1:5000:0:4:1

The tasks which produce output needed on the network:

tdl.commschedule.tasks = nofTasks

tdl.commschedule.tasks.i = moduleID:name:nofBytes

tdl.commschedule.tasks = 2

tdl.commschedule.tasks.0 = 0:produce:4

tdl.commschedule.tasks.1 = 1:produce:4

136 Platform-Specific Adaptations for FlexRay

The types of ports sent over the network:

tdl.commschedule.types = nofTypes

tdl.commschedule.types.i = basicType:nofBytes

tdl.commschedule.types.i = 'struct':nofBytes:module:type

tdl.commschedule.types.i = 'array':nofBytes:module:type:nofElems:elemTypeID

tdl.commschedule.types = 1

tdl.commschedule.types.0 = int:4

The members of structs needed on the network:

tdl.commschedule.members = nofMembers

tdl.commschedule.members.i = structTypeID:name:memberTypeID

tdl.commschedule.members = 0

The output ports which are sent over the network:

tdl.commschedule.ports = nofPorts

tdl.commschedule.ports.i = moduleID:taskID:name:typeID

tdl.commschedule.ports = 2

tdl.commschedule.ports.0 = 0:0:o:0

tdl.commschedule.ports.1 = 1:1:o:0

The association of tasks and output ports:

tdl.commschedule.taskPorts = nofTaskPorts

tdl.commschedule.taskPorts.i = taskID:portID

tdl.commschedule.taskPorts = 2

tdl.commschedule.taskPorts.0 = 0:0

tdl.commschedule.taskPorts.1 = 1:1

The async frames needed on the network:

tdl.commschedule.asyncFrames = nofAsyncFrames

tdl.commschedule.asyncFrames.i = asyncFrameNr:senderNodeID:taskID:nofBytes

tdl.commschedule.asyncFrames.i.receivers = nofReceivers

tdl.commschedule.asyncFrames.i.receivers.j = receiverNodeID

tdl.commschedule.asyncFrames = 1

tdl.commschedule.asyncFrames.0 = 195:0:1:4

tdl.commschedule.asyncFrames.0.receivers = 1

tdl.commschedule.asyncFrames.0.receivers.0 = 1

Incremental Scheduling via FIBEX

We have learned that for instance in the automotive industry it is an important

requirement to be able to integrate new systems with already existing components

and communication buses. Therefore we developed a method we call incremental

scheduling that enables to combine a possibly hand-written, already existing FlexRay

schedule with the TDL approach of automatic schedule generation. We use the FIBEX

data format as a means of data exchange as it is already supported by most FlexRay

tools. FIBEX is an XML file format describing the complete communication

infrastructure of a car, with FlexRay being only one of the bus protocols it supports.

The FlexrayPlatform class offers both FIBEX import and export. The export

functionality enables that FlexRay systems built from scratch can subsequently be

extended using third-party tools. When extending the schedule of an already existing

schedule via FIBEX import, all global FlexRay parameters are taken from the FIBEX

file. FlexrayPlatform must then ensure that these parameters are obeyed as

otherwise FlexRay communication is not possible. The parameters include the length

of the FlexRay period and the number and size of static and dynamic slots.

Furthermore, all already occupied slots are identified and then taken into account

Platform-Specific Adaptations for FlexRay 137

when assigning TDL frames to FlexRay slots. Legacy FlexRay signals are mapped to

TDL modules by using sensors and actuators. The TDL:VisualDistributor provides

dialogs which let the user select the FIBEX signal a sensor or actuator should read or

write respectively. See the next section for a case study using the incremental

scheduling functionality.

5.7. Case Study

In addition to the producer-consumer example which we used to demonstrate the

features of TDL and the TDL tool chain throughout the last chapters, we present an

additional case study in this section. It shows how TDL can be integrated with a

legacy FlexRay system using incremental scheduling. The setup consists of two Node

Renesas and one MicroAutoBox which are connected via FlexRay. One of the Node

Renesas nodes acts as a legacy node, i.e. its code is not obtained using the TDL tool

chain but created manually so that it sends and receives signals via the bus. In

correspondence to the legacy node's functionality, there is a FIBEX file provided

which describes the data it sends and receives and the parameters of the FlexRay

bus.

Figure 48 presents an overview of the data flow of the case study. All values

exchanged between nodes are transferred via a FlexRay bus to which all nodes are

connected to. Node Renesas 1 executes an Incrementer and a Decrementer module

which produce an incremented or decremented value respectively. The Decrementer

module changes the speed in which it decrements depending on the mode the

module is currently in. In one mode the rate in which the value changes is the same

as for the Incrementer module while in the second mode the rate is doubled. The

Node Renesas 1

Decrementer

Figure 48. Legacy case study data flow

Incrementer

MicroAutoBox

Sum

Node Renesas 2

Legacy

Code

Analog output

Analog output

Analog output

Button input

FlexRay bus

138 Platform-Specific Adaptations for FlexRay

mode switch is triggered by pressing a button during a defined interval. Both

modules send their output ports to the third module in the system named Sum. It

computes the sum of the two values and is executed on the MicroAutoBox node. The

outputs of Incrementer and Sum are also output using digital/analog converters on

the respective nodes.

The Node Renesas 2 legacy node runs code which transmits a Boolean value

indicating whether the front panel button 1 is pressed via the FlexRay bus and

Figure 50. Case study oscilloscope plot

Figure 49. Mapping of a TDL sensor to a FlexRay signal

Platform-Specific Adaptations for FlexRay 139

receives an 8 bit value which it outputs on its first digital/analog converter port. The

FIBEX file contains exact information about these signals and also about all FlexRay

cluster parameters. When importing a FIBEX file, the FlexRay scheduling plug-in

ensures that the newly added nodes executing TDL modules integrate with these

existing parameters and uses the communication slots specified in the FIBEX file. The

mapping of FlexRay signals to sensors and actuators of the TDL modules is

performed using the sensor and actuator device mapping dialog of the

TDL:VisualDistributor. Figure 49 illustrates the mapping of the button signal to the

sensor s of the Decrementer module.

Figure 50 depicts an oscilloscope plot of the running case study for a period of 5

seconds. During this time, the Decrementer module changes its mode from the slow

to the fast rate mode and back. The first channel in yellow shows the output signal of

the Incrementer module picked up by a probe connected to the first analog output of

Node Renesas 1. Channel 2 in green indicates the output of the legacy node Node

Renesas 2 which obtains the decrementer value directly from the FlexRay bus.

Finally, the channel at the bottom in purple plots the output of the signal produced

by the Sum module computed on the MicroAutoBox.

6. TDL Workflow

This chapter is devoted to an analysis of the workflow typically employed in the

industry when developing components of distributed embedded systems. Specifically,

we will focus on the automotive industry, which is characterized by a strict

separation of concerns between the Original Equipment Manufacturer (OEM) and its

suppliers. It is based on hardware components or Electronic Control Units (ECUs),

where the OEM specifies the network layout and communication system properties

before suppliers develop individual ECUs implementing the required functionality. We

argue that platform abstractions such as envisioned by AUTOSAR or the Logical

Execution Time (LET) abstraction would allow a fundamental overhaul of the

development workflow, eventually leading to a significant gain in productivity and

flexibility. We analyze the typical workflow and two standard development tools

which are commonly used and compare both to the development workflow employed

by tools based on the Timing Definition Language (TDL) which represents a LET-

based language. This chapter is an extended version of the work published in [40].

6.1. Introduction

So far, the principal means for structuring the growing amount of software in a car is

the splitting of functionality into separate Electronic Control Units (ECUs). An ECU

corresponds to a software module. This affects the division of work between an

Original Equipment Manufacturer (OEM) and its suppliers and thus the overall

development workflow. The OEM specifies all signals sent between the ECUs in the

overall electronic system and the complete communication infrastructure which

carries them. These signals and the topology information, together with a detailed

functional specification, are the basis for the development work of the suppliers,

which eventually provide one or multiple ECUs to the OEM who is then responsible

for the final integration and testing of the overall system.

This approach requires quite a detailed knowledge of the electronic system from the

beginning, as the ECUs depend on the communication parameters and signals and

vice-versa. Especially when using the FlexRay protocol [34] there are numerous

parameters, such as the division into a so-called static (time-triggered) and dynamic

(event-triggered) part, the communication cycle length and static slot size, that need

to be agreed on in an early phase of the development process as otherwise the ECUs

are not able to communicate. Consequently, changes in a later phase are expensive,

as they require adaptations in all ECUs of potentially different suppliers.

The original vision of AUTOSAR [11] was to abstract from platform details to allow

developing a software component once and then be able to deploy it automatically on

any hardware platform, as depicted in Figure 51. This would have held the potential

to also change the rigid development process. The Timing Definition Language shares

this vision with AUTOSAR. One consequence of an adequate platform abstraction

would be that the communication schedule is not a requirement which suppliers need

142 TDL Workflow

to obey, but which can be generated automatically as a last step when the OEM

integrates all components.

In the following we first take a closer look at the AUTOSAR standard. Then we outline

and compare a) the non-AUTOSAR workflow based on Elekrobit's EB Designer Pro b)

an AUTOSAR-workflow based on Vector's DaVinci Tool Suite and c) a TDL workflow

based on the TDL tools integrated in MATLAB/Simulink [16]. We argue that b) is not

sufficient to significantly simplify the development workflow in comparison to a) and

that only abstractions such as LET that allow the automatic generation of platform-

specific code will do so.

6.2. AUTOSAR

AUTOSAR stands for AUTomotive Open System ARchitecture and is an international

standard developed by major companies of the automotive industry, including

Original Equipment Manufacturers (OEMs), suppliers, and tool developers. It aims at

an industry-wide standardized automotive software architecture in order to ease

software development and the integration of software systems between OEMs and

suppliers. One of the main motivations for AUTOSAR was the increasing complexity

of automotive software and systems, induced by the growing number of networked

ECUs. To tackle this challenge, AUTOSAR introduces an architectural level of system

design and fosters the modularization of systems and the portability and reuse of the

resulting components, especially targeted at distributed automotive systems.

These goals are only reachable after a paradigm shift from traditional ECU-oriented

software development to a function-oriented development process, which is exactly

what AUTOSAR tries to accomplish. A specific use case would be the process of

combining software of multiple vendors on a single ECU. Previously, this was difficult,

as specific functionality typically was provided by one vendor which delivered one

complete ECU to be integrated in the system by the OEM. AUTOSAR now provides

the means so that OEMs can split up the system on a software component level and

Distributed

platform P3

Component C develop once

deploy automatically

on any platform

Single-node

platform P1

Single-node
platform P2

Figure 51. Automatic platform deployment

TDL Workflow 143

allocate those components to ECUs. This process of ECU consolidation is vital, as the

growing number of functions required in future cars would otherwise lead to an

equally growing number of ECUs, being expensive, difficult to maintain, and error-

prone. Furthermore, a lot of functions in today's cars involve multiple sensors values

and actuators shared by other functions scattered across the whole vehicle, making

the one-ECU-per-function approach unfeasible.

In order to reach its goals, AUTOSAR focuses on the following three areas [41]:

 Architecture

A layered architecture provides independence of application software from

specific hardware platforms. It consists of three main layers: The application

software, the Run-Time Environment (RTE) and the Basic Software (BSW). The

BSW is the bottom layer which abstracts from ECU-specific hardware and can

be seen as a standard operating system for the automotive industry. It is

utilized by the RTE middleware layer, which consists of generated code

according to the connections modeled between components.

 Methodology

The AUTOSAR methodology facilitates XML exchange formats to configure the

Basic Software and to enable the exchange of components across suppliers

and OEMs and their deployment to ECUs. The ECU development process is

divided into a System View, an ECU View, and a Component View. Although

AUTOSAR prescribes no timeline and no roles and responsibilities, the typical

work-split is that the system configuration is performed as a first workflow

step by the OEM and ECU configuration and component implementation is

subsequently done by the suppliers. System configuration mainly consists of

the specification of the Virtual Functional Bus (VFB), which describes the

communication relationships between components in a way which abstracts

from whether components are eventually executed on the same ECU or not. In

the next development step, components are assigned to ECUs, ECU-specific

RTEs are generated, and ECU and component templates are extracted, which

form the basis for the subsequent development of those ECUs and

components.

 Application interfaces

These are interfaces of typical automotive applications, which are specified in

order to ease their development and integration. According to the AUTOSAR

motto "compete on standards, cooperate on implementation," the concrete

implementation of these applications is not covered by the standard.

AUTOSAR also leads to better and standardized documentation, especially as it

includes the explicit description of networks, which previously was only available in

prose form and is now structured in the form of interface definitions. Furthermore, it

enables to automate certain development steps, e.g. by generating template code for

components out of the system level description. This speeds up development and

ensures consistency throughout the whole process.

Release R4.0 of the AUTOSAR standard includes timing extensions enabling the

specification of timing properties for the different development phases. Those

extensions can be used at VFB, System, and ECU level to describe the timing

behavior of an AUTOSAR system. The basic entity in the timing specification is an

event. Events are chained together to form so-called timing chains which include all

events occurring between a defined stimulus and a response in chronological order.

144 TDL Workflow

This allows describing end-to-end timing constraints which span across multiple

views and may also include physical sensors and actuators.

6.3. Current Workflow and Tools in the Automotive Industry

According to [42], the automotive systems engineering process consists of the

following phases: First, an analysis of the requirements is performed. The system

level requirements are then decomposed into sub-functions. In a step called

partitioning, those sub-functions are mapped to ECUs, sensors and actuators. In

addition, appropriate bus systems are selected. Next the workflow continues with the

actual component development and finally concludes with system integration and

validation.

The tools available for developing distributed automotive systems reflect the

described workflow which is commonly employed in the industry. Typically one has to

specify the communication properties as one of the first steps in development as all

further steps depend on it. We take a closer look on two established tools, namely

Elekrobit's EB Designer Pro and the Vector's AUTOSAR-based DaVinci tool suite.

6.3.1. EB Designer Pro

EB Designer Pro by Elekrobit [10] (formerly DECOMSYS::DESIGNER_PRO) is a tool

for the design of distributed real-time systems using the FlexRay communication

protocol. Figure 52 illustrates its main user interface. The tool aids the user to set up

all FlexRay parameters and produces configuration files for FlexRay controllers and

the operating system running on the ECUs of the system. Task functions must be

provided separately. The tool is available in a full version and also as two separate

units, the EB Designer Pro <SYSTEM>, which is limited to OEM design tasks and the

EB Designer Pro <ECU>, limited to design tasks performed by ECU suppliers. The

Figure 52. EB Designer Pro Main User Interface

TDL Workflow 145

developer is guided step-by-step through all required settings to obtain a working

system. The steps are divided into a system part and an ECU part which corresponds

to the two versions of EB Designer Pro as mentioned above.

Figure 53 outlines the complete development workflow of EB Designer Pro. The first

step in the system part is the architecture definition, where the network topology

including the number of ECUs and communication controllers in the system and the

bandwidth of the FlexRay bus is specified. Next, the detailed settings of the FlexRay

protocol must be entered using an optional wizard. The wizard and further parameter

entry forms support the user by checking the supplied properties against the

constraints of the FlexRay specification. The system part is then concluded with a

step called communication planning, which involves the assignment of FlexRay

communication slots to ECUs in the system. To perform this step, at this point in

development it must be already known about the exact communication requirements

between nodes, i.e. which functions each node executes.

The next development phase is the ECU part which is typically done by one or more

suppliers, who are able to import all the settings the OEM has already specified in the

system part. The ECU workflow starts with an ECU hardware refinement step, where

the type of Microcontroller Units (MCUs) and FlexRay controllers are selected and

operating system parameters are specified. Next, the ECU software is refined by

defining application and system tasks and assigning them to MCUs. Finally,

automatic code generation for every ECU is triggered after the detailed configuration

of the communication layer. The code generated by EB Designer Pro consists of

operating system configuration files based on the tasks an ECU must execute and

FlexRay controller configuration files containing all FlexRay cluster and node

parameters.

Compile & link ECU binaries

ECU software refinement (task scheduling)

ECU hardware refinement (CPU and FlexRay controllers)

Communication planning (FlexRay slot assignment)

FlexRay protocol specification

Specify network topology (ECUs and buses)

System Requirements

Figure 53. EB Designer Pro workflow overview
(white: OEM, gray: supplier)

146 TDL Workflow

6.3.2. DaVinci Tool Suite

The DaVinci tool suite by Vector Informatik [43] consists of three parts. The System

Architect and the Network Designer are typically used by OEMs, whereas the DaVinci

Developer is targeted at ECU suppliers. Every tool is used to perform distinct design

tasks according to the AUTOSAR methodology, as described in 6.2. See Figure 54 for

an overview of the workflow.

DaVinci System Architect is used to define AUTOSAR software components on an

abstract level, using AUTOSAR's Virtual Functional Bus abstraction. This means that

no functionality is specified, but only the interface and connections of components,

i.e. so-called ports that have a type and a data size. Figure 55 shows the System

Architect's user interface, depicting three interconnected software components. In

addition, a network of ECUs is defined and subsequently every software component

is mapped to an ECU where it is later executed. After this step, ports can be

distinguished by whether the associated software components are mapped to the

same ECU and therefore are ECU-local (so-called internal ports) or require network

communication as they are located on different ECUs (so-called external ports).

DaVinci Network Designer is available for different communication buses such as CAN

and FlexRay. It is used to set up all properties of the specific protocol, including

bandwidth, communication layout, frames and messages. The most important

workflow step is the assignment of external ports to messages so that the required

values for exchanging data between software components are transferred via the

bus.

On basis of the former specification of the system, an ECU supplier can then use

DaVinci Developer to create the complete ECU software. So-called Runnables must

be defined which are used as a container for user code and finally implement the

functionality of software components. Runnables then need to be mapped to

operating system tasks, which requires also a priority to be assigned to them.

Finally, the operating system and the communication layer must be configured

before the complete ECU software can be compiled and linked.

Compile & link ECU binaries

Configuration of OS and communication layer

Definition of Runnables that implement software components

Detailed communication planning based on mapping (bus-specific)

Mapping of software components to ECUs

Definition of software components & ports connecting them

System requirements

Figure 54. DaVinci Tools workflow overview

(white: OEM, gray: supplier)

TDL Workflow 147

6.3.3. Evaluation

In order to evaluate the flexibility of the workflow of the two tools, let us consider

the following example use case: For reasons such as ECU consolidation, a software

component of a previously completely specified system needs to be moved from one

ECU to another. This typically leads to a change in the communication requirements

for the involved ECUs and therefore also to a change required in the communication

schedule. For both tools this means that adaptations are required early in the

workflow, and as all subsequent steps depend on it, they all need to be reevaluated

and in many cases a redesign is necessary.

When using the EB Designer Pro, it depends on the concrete change that is required

to determine to which workflow step one has to go back. If it is sufficient to add or

change the contents of individual FlexRay slots, changes in the communication

planning workflow step are required. If this is the case, subsequent changes in the

ECUs are local to the ECUs involved in the relocation of the software component. If

however moving the component requires changes in either the slot size or the

communication cycle length, this leads to a change in the FlexRay protocol

configuration and thereby invalidates the design of all ECUs in the cluster. In this

case all FlexRay controllers must be reconfigured which potentially leads to a change

in their timing and consequently also a change to the behavior of every single task

on every ECU of the system.

Unfortunately, also the AUTOSAR-based DaVinci Tools provide only little support for

the described ECU consolidation use case. As the mapping of software components to

ECUs is done by the OEM early in the workflow, a change again invalidates all

subsequent steps to a certain degree. Most importantly, the communication planning

Figure 55. DaVinci System Architect user interface

148 TDL Workflow

step, which is done manually with DaVinci Network Designer, is critical as it later is

the basis for ECU development with DaVinci Developer.

The AUTOSAR methodology is meant to promote a less ECU-centric workflow by

supporting the reuse of components and the freedom of moving them between ECUs.

Indeed, these tasks are simplified by the introduction of the standardized AUTOSAR

Basic Software and the introduction of the software component abstraction.

Unfortunately, it is questionable whether AUTOSAR can actually deliver its promises,

as core aspects of compositionality are not taken thoroughly into account. In specific,

the timing behavior of AUTOSAR components is still subject to the concrete

deployment of the components. It depends on complex timing issues regarding

factors such as the layout of the communication schedule, the CPU power of the

ECUs, the task priorities of AUTOSAR Runnables, and the timing of sensors and

actuators, among others. While the introduction of timing chains simplifies the

analysis of the timing of an AUTOSAR system, it does not lead to predictable timing

behavior as it relies on assumptions such as the frequency of event occurrence. As a

result, (a) moving a software component from one ECU to another requires

significant manual design and development efforts and (b) it is not guaranteed that

the component will behave equally as before. Consequently, the consolidated system

must again be rigorously tested.

One approach to tackle the lack of timing information in AUTOSAR is the TIMMO

(TIMing MOdel) methodology [44], which also influenced the design of the AUTOSAR

timing extensions. Its main purpose is to support the enrichment of design models

such as AUTOSAR with timing information, including timing requirements, timing

constraints, and timing properties, that specify the required and existing dynamic

behavior of systems. Although TIMMO aids developers in handling the timings

aspects of a system, it does not go as far as the possibility to automatically deploy a

component on any platform including a guarantee that its timing is preserved, while

this is a key feature of TDL using the LET abstraction.

6.4. The TDL Approach and its Impact on the Workflow

This section outlines the TDL approach and its corresponding tool chain and shows its

possible impact on the automotive industry's development workflow. As already

presented in detail in chapter 2, TDL is based on the concept of Logical Execution

Time (LET). It abstracts from the physical execution time of tasks and, in the

distributed case, from network communication. As long as both physical task

execution and potential network communication at runtime take place within the LET

of a task, the software will exhibit exactly the same observable behavior on any

(distributed) platform. It the following we will present how the TDL tools can be

applied to automotive software development, the advantages of a TDL-based

workflow and finally how the transition from today's workflow could be accomplished.

6.4.1. TDL Tools

The main TDL tools are the TDL:VisualCreator and the TDL:VisualDistributor, where

the former is used for platform-independent modeling and the latter for platform

mapping. The TDL:VisualCreator is used to create TDL modules, which are software

components that act as a unit of composition and distribution. Using the

MATLAB/Simulink integration feature of the TDL:VisualCreator allows the simulation

of the TDL system, which due to the LET abstraction is guaranteed to be equal to the

observable behavior on the platform. The TDL:VisualDistributor lets the user deploy

TDL modules on a potentially distributed hardware platform. It allows specifying the

platform, i.e. the ECUs and communication buses connecting them. After setting a

number of hardware-specific properties, the complete code for the system can be

TDL Workflow 149

generated. This also triggers the fully automatic bus schedule generator which

determines the communication requirements of TDL modules by their deployment to

ECUs. Details on both tools can be found in section 2.6 and 2.7, where the latter

presents an overview of the complete tool chain.

Regarding the automotive workflow, the TDL tools can be used as shown in the

workflow overview in Figure 56. Suppliers may use the TDL:VisualCreator to model

software components according to requirements provided by the OEM. The OEM then

uses the TDL:VisualDistributor to map these TDL modules to the target platform and

finally, ECU code is generated automatically. Concerning intellectual property (IP)

protection, it should be noted that the TDL code of a component does not reveal any

details on its implementation apart from the timing requirements of (arbitrarily

named) individual functions. The functionality code itself does not have to be

provided in source code, but can also be delivered to the OEM as object code for

integration.

6.4.2. Evaluation

Considering the ECU consolidation use case as described in 6.3.3, it can be

performed with much less effort using the TDL tools. As no TDL modules need to be

changed in such a case, only the mapping of modules to the hardware platform must

be adapted in the TDL:VisualDistributor. This is done by assigning the module to

another ECU and setting the sensor, actuator and WCET properties accordingly. After

that, the code of the whole system–including the network schedule–is simply

regenerated. Note that if the schedulability check passes and code is generated the

observable behavior is exactly the same as before ECU consolidation, without

requiring additional testing.

6.4.3. Workflow Advantages

The TDL workflow offers a new level of flexibility and productivity for OEMs and

suppliers that range from testing to the optimization of hardware platforms.

Compile & link ECU binaries

Automatic generation of communication schedule and ECU glue code

Deploy TDL modules on target platform

Specify target platform (ECUs and buses)

Simulate behavior (optional)

Specify TDL modules including functionality code

System Requirements

Figure 56. TDL tools workflow overview
(white: OEM, gray: supplier)

150 TDL Workflow

In contrast to conventional tools and also the generic AUTOSAR methodology, the

specification of the communication network is not done manually and early in the

development workflow, but instead it is generated automatically as a last step. The

design of TDL modules is completely platform-independent and lets the supplier

focus on the functionality to implement without having the target platform in mind.

When using the Simulink-integrated TDL:VisualCreator, the behavior of the modeled

functionality can be accurately simulated. The supplier can also utilize the fact that

TDL modules behave exactly the same on any (distributed) platform by testing the

functionality in a real car by deploying it to any platform for which a TDL runtime

system exists. The fact that it is sufficient to test functionality only in the Simulink

simulation or on one hardware platform also greatly reduces the testing efforts.

For the OEM, the TDL methodology provides the flexibility of choosing the hardware

platform, i.e. the ECUs and all connecting communication infrastructure, after all

functionality is implemented and not beforehand. Suppliers do not provide complete

ECUs but instead TDL modules and corresponding functionality code. The mapping of

TDL modules to ECUs is then up to the OEM, who can then for example select

numerous less powerful nodes or a small number of powerful nodes in an effort to

reduce costs, to increase reliability or to improve electrical stability late in the

development process. Another example is the selection of the communication bus:

On basis of the actual bandwidth requirements, the OEM can choose for example

between CAN, FlexRay [34] and TTEthernet [45] without redesigning or retesting the

software, as it is guaranteed that it behaves the same as long as TDL is able to

generate code for the specific hardware platform.

6.4.4. Transition from Today's Workflow

As the TDL methodology introduces fundamental changes to the current workflow,

we are aware that the transition will be a difficult task. However, we think the

advantages outlined above are strong arguments and that this transition will quickly

pay off. This will be especially true if an OEM does not want to commit to a specific

communication protocol and wants to be able to change it easily. The TDL tools

provide a single development environment that can be adapted to existing target

platforms by developing a plug-in and runtime system for it. Choosing the hardware

late in the development process avoids pessimistic hardware choices or complex

analysis on what platforms might be adequate to perform the required functionality.

Suppliers can reuse their functionality code or Simulink models and construct TDL

modules out of them. However they need to make sure that the functionality still lies

within the specification after adding LETs to all functions. The main benefit for

suppliers is that they can focus on the functionality and develop in a platform-

independent way and therefore are released from the burden of testing the same

software repeatedly on different platforms.

Legacy systems can be integrated with TDL by so-called incremental scheduling. This

approach enables to import a legacy communication schedule and to extend it by

adding the communication frames required by the TDL system. It is also possible to

exchange values between the two domains by mapping legacy signals to sensors and

actuators of TDL modules. This integration allows OEMs and suppliers to phase-in the

TDL methodology without starting completely from scratch by replacing parts of an

existing system with TDL modules step-by-step.

7. Conclusion and Future Work

In the chapters above we demonstrated the feasibility of automatic code and

communication schedule generation for LET-based systems by using FlexRay systems

as examples. The proposed TDL runtime system and code and schedule generation

framework are a further contribution towards a comprehensive, flexible, and platform

independent modeling tool chain for time-triggered real-time systems. While even

the AUTOSAR methodology fails to fulfill its vision of proper platform abstraction, the

TDL tools deliver this vision. We outlined how employing the LET concept finally

enables the industry to move away from the traditional ECU-centric workflow to a

truly software component-centric workflow. In our view, the newly proposed

workflow would have a beneficial impact on the OEM-supplier relationship, leading to

increased efficacy, productivity and flexibility.

Future Work

While the thesis proves the feasibility of using TDL and the TDL tool chain for

industrial, distributed real-time systems, there are still numerous challenges to

further improve its functionality and the range of applications.

One such challenge is the integration of multiple timing domains or time sources.

Currently a TDL system is assumed to have a single clock shared by all modules in

the system and that they all start synchronously. All nodes in the system must be in

sync so that the LET start and end instances of tasks occur at the same time on each

node of the system. However, it is often not feasible to adhere to this strict

requirement. Clocks on a computing node are often an order of magnitude higher

that the clock on the bus connecting nodes and therefore are expensive to

synchronize. In larger systems there may be multiple time triggered busses which

cannot be synchronized to each other at all. And in motor control applications for

example, the software is often synchronized to the crank shaft of the engine and

therefore changes during operation. All these examples demonstrate the need to

relay the strict synchronization requirement. A solution might introduce groups of

TDL module or nodes which share a common clock and a way to integrate those

groups without losing all real-time guarantees and simulation accuracy.

Concerning the code and schedule generation framework and its frontend, the

TDL:VisualDistributor, a possible additional functionality is the automatic assignment

of a set of modules to a set of nodes. Apart from testing the schedulability of all

possible combinations, is also possible search for a mapping which optimizes for

minimal data transfer between nodes by placing modules which communicate

frequently and with large messages between each other on the same node. The fact

that some modules require sensors and actuator hardware which might not be

present on every node could be tackled by introducing constraints specifying which

hardware a module requires. The automatic mapping functionality could also be used

152 Conclusion and Future Work

to recommend an alternative mapping to a user in case a manual mapping turns out

to be unschedulable. Further possible improvements include support for systems with

multiple and heterogeneous communication networks, e.g. for combining FlexRay

with CAN and other busses as often done in automotive systems. These would

require generating gateway nodes translating between these networks automatically.

As multiprocessor and multicore systems become increasingly important also in real-

time systems, it is a logical step to support such systems by the TDL Runtime

System. A straight-forward approach would be to keep a single instance of the TDL

Machine and distribute the execution of task functionality code across all processors

or cores available. A multi-threaded version of the TDL Machine is also possible, but

depending on the concrete E Code there might not be many instructions that can be

executed in parallel. However, the parallel execution of complex sensor and actuator

code would help to keep the execution time of the TDL Machine as short as possible

as required by the assumption that this code is executed in logically zero time.

The dependability standards of embedded real-time applications often require fault

tolerance and therefore the redundancy of components. While TDL guarantees

predictable behavior of the modules on a computing node, it cannot prevent

hardware failures. As TDL modules are already used as units of distribution, they are

also a natural choice for the unit of replication. Major challenges however are the

management of multiple values of the public output ports of a module, the

reintegration of modules into a running system and the propagation of information

about redundant modules into the system. An example for the latter is the triggering

of a mode switch when specific modules or nodes are missing. The handling of only

partially complete TDL systems could also be used to support systems with unreliable

communication links, such as wireless sensor networks.

References

[1] Charette, R. N. This Car Runs on Code. 2009. IEEE Spectrum,

http://www.spectrum.ieee.org/feb09/7649.

[2] Henzinger, T. A. and Sifakis, J. The Discipline of Embedded Systems Design.

2007. Computer, pp. 32-40.

[3] Henzinger, T. A., Horowitz, B. and Kirsch, C. M. Giotto: A Time-triggered

Language for Embedded Programming. 2003. Proceedings of the IEEE 91, pp.

84–99.

[4] Ghosal, A., et al. Event-driven Programming with Logical Execution Times.

2004. Hybrid Systems Computation and Control, Lecture Notes in Computer

Science 2993, Springer.

[5] Ghosal, A., et al. A Hierarchical Coordination Language for Interacting Real-

Time Tasks. 2006. Proc. ACM International Conference on Embedded Software

(EMSOFT).

[6] Project, MoDECS. Model-Based development of Distributed Embedded Control

Systems. 2003-2005. http://modecs.cc.

[7] Farcas, C. Towards Portable Real-Time Software Components. 2006. PhD

Thesis, Department of Computer Science, University of Salzburg.

[8] Farcas, E. Scheduling Multi-Mode Real-Time Distributed Components. 2006.

PhD Thesis, Department of Computer Science, University of Salzburg.

[9] NXP Semiconductors. NXP drives active safety with world’s first FlexRay

transceiver. 2006. Press Release, http://www.nxp.com/news/content/

file_1279.html.

[10] Elekrobit. EB Designer Pro. http://www.elektrobit.com.

[11] AUTOSAR. AUTOSAR standard. http://www.autosar.org.

[12] Kopetz, H. Real-Time Systems - Design Principles for Distributed Embedded

Applications. 2007. Springer. ISBN 0792398947.

[13] Naderlinger, A. Modeling of Real-Time Software Systems based on Logical

Execution Time. 2009. Dissertation, University of Salzburg.

[14] Templ, J. Timing Definition Language (TDL) Specification 1.5. Salzburg :

University of Salzburg, 2008. Technical Report.

[15] Farcas, E., et al. Transparent Distribution of Real-Time Components Based on

Logical Execution Time. 2005. Proceedings of the 2005 ACM SIGPLAN/SIGBED

154 References

conference on Languages, compilers, and tools for embedded systems (LCTES).

[16] The Mathworks. MATLAB/Simulink. http://www.mathworks.com.

[17] Halbwachs, N., et al. The synchronous data-flow programming language

LUSTRE. 1991. Proceedings of the IEEE, 79(9):1305–1320.

[18] Berry, G. and Gonthier, G. The ESTEREL synchronous programming language,

design, semantics, implementation. 1992. Science Of Computer Programming,

19(2):87–152.

[19] Benveniste, A. and G., Berry. The Synchronous Approach to Reactive and

Real-Time Systems. 1991. pp. 1270-1282, Proceedings of the IEEE.

[20] Kirsch, C. M. Principles of Real-Time Programming. 2002. pp. 61-75,

Proceedings of the 2nd international Workshop on Embedded Software

(EMSOFT), LNCS 2491.

[21] Liu, J. and Lee, E. A. Timed Multitasking for Real-Time Embedded Software.

2003. IEEE Control Systems Magazine: Advances in Software Enabled Control,

pp. 65-75.

[22] Angelov, C. and Berthing, J. Distributed Timed Multitasking - A Model of

Computation for Hard Real-Time Distributed Systems. From Model-Driven

Design to Resource Management for Distributed Embedded Systems. 2006, pp.

145-154.

[23] Hoare, C. A. R. Monitors: An Operating System Structuring Concept. 1974.

Communications of the ACM Vol. 17 (10), pp. 549-557.

[24] Dijkstra, E. W. Cooperating sequential processes. 1968. In Programming

Languages, Academic Press, New York.

[25] Herlihy, M. P. A Methodology For Implementing Highly Concurrent Data

Structures. 1990. Proceedings of the Second ACM Symposium on Principles and

Practice of Parallel Programming, ACM, New York.

[26] Greenwald, M. B. Non-Blocking Synchronization and System Design. 1999.

PhD Thesis, CS-TR-99-1624, Stanford University.

[27] Templ, J., Pletzer, J. and Pree, W. Lock-Free Synchronization of Data Flow

Between Time-Triggered and Event-Triggered Activities in a Dependable Real-

Time System. 2009. Proceedings of the 2nd International Conference on

Dependability (DEPEND 2009), Athens, Greece.

[28] Henzinger, T. A., et al. Time-safety checking for embedded programs. 2002.

Embedded Software. Lecture Notes in Computer Science 2491. Springer.

[29] Yodaiken, V. and Barabanov, M. A Real-Time Linux. 1997. Proceedings of the

Linux Applications Development and Deployment Conference (USELINUX),

Anaheim, CA.

[30] Kopetz, H. and Reisinger, J. The Non-Blocking Write Protocol NBW: A

Solution to a Real-Time Synchronization Problem. 1993. Proceedings of the 14th

IEEE Symposium on Real-Time Systems, 131-137, IEEE, New York.

[31] Pletzer, J., Templ, J. and Pree, W. A Code Generation Framework for Time-

Triggered Real-Time Systems. 2009. Int. Symposium on Software/Hardware

Optimizations for Embedded Systems (SHOES09) in conjunction with 2009 IEEE

References 155

Int. Conference on Embedded Software & Systems (ICESS), Hangzhou,

P.R.China.

[32] Henzinger, T. A., Kirsch, C. M. and Matic, S. Composable Code Generation

for Distributed Giotto. 2005. Proc. of the ACM SIGPLAN/SIGBED conference on

Languages, compilers, and tools for embedded systems (LCTES).

[33] OSEK Group. OSEK/VDX Operating System Specification. 2005. Version 2.2.3,

available from http://www.osek-vdx.org.

[34] Makowitz, R. and Temple, C. FlexRay - A Communication Network for

Automotive Control Systems. 2006. Proceedings of 2006 IEEE International

Workshop on Factory Communication Systems, pp. 207–212.

[35] Farcas, E. and Pree, W. Hyperperiod Bus Scheduling and Optimizations for

TDL Components. 2007. Proceedings of the 12th IEEE Conference on Emerging

Technologies and Factory Automation (ETFA), Patras, Greece.

[36] Farcas, E., Pree, W and Templ, J. Bus Scheduling for TDL Components. 2006.

Dagstuhl Conference on Architecting Systems with Trustworthy Components.

[37] Nakano, R and Yamada, T. Conventional genetic algorithm for job shop

problems. 1991. pp. 474-479, Proc. of the 4th International Conference on

Genetic Algorithms.

[38] Ding, S., et al. A GA-based scheduling method for FlexRay systems. 2005.

Proceedings of the 5th ACM International Conference on Embedded Software.

[39] Flexray Consortium. FlexRay Communications System Protocol Specification

Version 2.1 Revision A. 2005.

[40] Pletzer, J. and Pree, W. Impact of Platform Abstractions on the Development

Workflow. 2009. Symposium on Automotive/Avionics Systems Engineering

(SAASE), San Diego, CA, USA.

[41] Kindel, O. and Friedrich, M. Softwareentwicklung mit AUTOSAR. s.l. :

dpunkt.verlag GmbH, 2009. ISBN 978-3-89864-563-8.

[42] Weber, J. Automotive Development Processes. s.l. : Springer, 2009. ISBN 978-

3-642-01252-5.

[43] Vector Informatik. DaVinci Tool Suite. http://www.vector-worldwide.com.

[44] The TIMMO Consortium. TIMMO Timing Model, Methodology Version 2. 2009.

TIMMO Deliverable D7.

[45] TTA Group. TTEthernet Specification. http://www.ttagroup.org/ttethernet/

overview.htm.

