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Abstract

The purpose of the thesis is to integrate the Timing Definition Language (TDL) with
the Time-Triggered Protocol (TTP) for the development of fault-tolerant distributed
real-time systems. TDL is a language for the definition of real-time systems that aims
at a separation of the timing and the functionality of real-time applications. TTP is a
communication protocol based on the ideas of the Time-Triggered Architecture and is
intended for highly dependable distributed real-time systems developed by TTTech.
The goal of the integration was to show that it is possible to implement an application
written in TDL on the TTP platform with special focus on distribution and fault-
tolerance aspects.

For the purpose of the integration of TDL and the TTP development tools a set of
tools was designed and implemented. The core of it is a plugin for the existing TDL
compiler that transforms TDL source code into input for TTP tools in order to finally
get executable binaries suitable for the TTP hard- and software platform. This
required a detailed analysis of how to map the TDL constructs to the TTP tools. In
order to support fault-tolerance and distribution, additional specification was provided
in a separate file.

The applicability of the work is proved by means of a simple demo application that
uses the developed tool chain and incorporates distribution and fault-tolerance
features. As hardware platform a TTP cluster provided by TTTech was used. The
results show the feasibility of the ideas behind the TDL plugin and prove that they
work at least for simple applications.
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Chapter 1

Thesis Overview

This chapter contains an overview of the thesis. It includes an introduction to the
context and problem field and points out the goals and results of the work. Finally
the overall structure of the thesis is outlined.

1.1 Introduction and Motivation

The purpose of the integration of the Timing Definition Language (TDL) with the
Time-Triggered Protocol (TTP) tools and the case study is to explore the advantages
and limitations of TDL on top of a specific time-triggered platform. Furthermore, the
harnessing of platform-specific fault-tolerance in the context of the platform-
independent timing and communication specification in TDL should be evaluated. The
goal was to seamlessly integrate TDL and TTP by means of a TDL compiler plugin
that processes TDL modules and interfaces with the tools provided by TTTech for the
development of TTP applications in order to generate code for the TTP hardware
platform. The TTP protocol with the hardware and software tools for its development
is a suitable architecture for this purpose because the protocol already includes
services such as distributed clock synchronization, membership service and fault
tolerance mechanisms. The goal was to use these services and tools as much as
possible.

In order to demonstrate the distribution and fault-tolerance aspects we use a simple
demo application which was originally provided by TTTech to demonstrate the
functioning and usage of their tools. The idea was to recreate the application as a
TDL program and to use a compiler plugin to generate suitable code for the TTP
platform. The plugin generates scripts for the two main tools of the TTP tool suite,
namely TTPplan for cluster-level design and TTPbuild for node-level design. Via these
scripts the TDL timing definition is transformed into a valid input for the TTTech
tools. In order to support platform-specific distribution and fault-tolerance aspects
such as replication and redundancy, a separate annotation file is used to specify
these properties and some hardware specific variables for the TDL compiler.

1.2 Results

It proved to be possible to realize the timing and functionality TDL specifies on the
TTP platform using the tools TTTech provides. However it turned out that not every
TDL construct can be mapped to the TTP platform due to limitations of the tools or
the nature of the underlying TTP communication protocol.

Another result was that the integration of distribution and fault tolerance aspects in
TDL works when using a TDL module as unit of distribution and replication. A simple
demo application showed the feasibility of the suggested specifications and
mechanisms.

The thesis also contains a comparison of the development process that points out the
differences between using the TTP tools by TTTech and the TDL language.



1.3 Thesis Structure

Chapter 2 provides an introduction to the basics that need to be known to be able to
understand the work presented in the subsequent chapters. Although the first section
briefly covers the field of distributed real-time systems, probably a more in-depth
knowledge of it is required to fully understand all aspects presented below. The book
written by Kopetz [1] is a recommended source to gain such knowledge.

Chapter 3 presents the design and implementation of the plugin for the integration of
TDL and the TTP tools. The developed tool chain is explained and the relevant details
of the process are covered. This includes a description of the programming interface
of the TTP tools, the plugin interface of the TDL compiler and fault tolerance aspects.

Chapter 4 presents a case study that relies on the TDL compiler. The simple demo
application illustrates the capabilities of the plugin especially by using fault tolerance
mechanisms. The chapter covers the complete TDL-TTP tool chain to generate a
working application out of TDL modules.

Finally Chapter 5 summarizes the results of the thesis and discusses the limitations
and restrictions of the TDL compiler plugin and the tool chain. A comparison of the
development of distributed real-time applications with the TTP tools and TDL
concludes the thesis.



Chapter 2

Basics

The purpose of this chapter is to introduce the reader to a variety of terms and
technologies that need to be known in order to be able to understand the work
presented in the subsequent chapters. The aim is on one hand to give an overview
and on the other hand to explain relevant aspects regarding the thesis with more
detail.

2.1 Distributed Real-Time Systems

A brief overview of what real-time systems are all about is presented below. Typical
applications are mentioned and ways to classify such systems are presented. A
special focus is on distributed real-time systems regarding their additional problems
and advantages they have in comparison to non-distributed ones.

2.1.1 Real-Time Systems

A computer system is called a real-time computer system when it is not only required
that the system produces correct output values based on its inputs, but also to
perform this calculations in a bounded time interval. The instant when a calculation
must be finished and a value must be produced is called the deadline.

A distinction of real-time systems can be made based on whether the deadlines of a
system are soft or hard. In a soft real-time system the occasional missing of a
deadline results in degraded quality of service. An example would be a video player
application. A missed deadline might result in a small playback error that may even
not be noticed by the user. The more deadlines are missed the poorer the quality of
the system gets. Opposed to this example a missed deadline in a hard real-time
system can cause catastrophic effects in systems such as automotive engine control
or aerospace applications. In the worst case scenario the motor gets damaged or the
airplane gets into an unstable state and crashes.

Event-Triggered versus Time-Triggered

Another very important classification of real-time systems is whether they use an
event-triggered or time-triggered approach. A trigger is a mechanism that initiates a
specific activity, e.g. the execution of a computation task or the communication of a
message. An event-triggered system reacts to events such as the change of a sensor
value immediately and for example starts the execution of a task that processes the
value. This is typically realized with the usage of an interrupt associated with the
event source. In contrast to that in a time-triggered system all activities are initiated
periodically by the progression of time. Activities such as sensors readings, task
invocations and communication activities only happen at pre-defined periodic time
instances. The only interrupt in such a system is the timer interrupt issued by the
system clock.
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One obvious advantage of the event-triggered approach is the potentially smaller
latency between the occurrence of an event and the reaction to it. A change in the
state of a sensor is detected immediately and not only when it is scheduled to be
read like in a time-triggered system. But this immediate reaction also turns out to be
a huge disadvantage when a lot of events (and consequently interrupts) occur almost
at once. This can cause a missed deadline as the processor of the system has only
finite computation capacity and therefore cannot handle all interrupts and activities
that are triggered by them in parallel. The problem is that in hard real-time systems
it must be proven that deadlines are never missed, even in such a worst-case
scenario. It is much more straight-forward to prove that for a time-triggered system
because they are more predictable as every activity is pre-planned.

2.1.2 Distribution

A distributed real-time system consists of a number of nodes and a communication
system. Naturally the latter is of great importance as the communication between
nodes usually is vital for the distributed system to perform the functions it is
intended for. The interface between the host computer and the communication
controller inside a node is called the communication-network interface (CNI). The CNI
is a way of hiding from the node how the communication actually takes place. It can
be designed in many different ways. An important design decision is whether the
communication is controlled by the senders and receivers of messages or if the
communication system handles the transmission of messages autonomously. The
first is called the event message concept where the sender sends a message when an
event occurs and that message is delivered via the communication system to the
receiver immediately. Here the control when a message is sent is in the sphere of
control of the host computer. This concept requires a one-to-one synchronization
between communication partners as otherwise queues will overflow at the receiver or
the sender may be blocked. In contrast, when using the so-called state message
concept the communication system is in control concerning the instance of time when
messages are transmitted. The sender may update the state message independently
of the receiver and the receiver may read the message many times or not at all. The
CNI for such a communication system typically is implemented by means of a dual-
ported RAM that decouples the host computers from the communication system. This
solution avoids that control signals pass the CNI, meaning that a host is not allowed
to directly control what and when something is transferred on the bus. This leads to a
looser coupling between the communication partners as one-to-one synchronization
is not needed.

Arguments for Distribution

According to [1] there are four major reasons to choose a distributed solution for
real-time systems:

e Composability
Composability enables developers to develop and test subsystems
independently and finally compose them to form a distributed system instead of
a monolithic single system. It must be guaranteed that the properties of every
subsystem are not invalidated by the system integration.



e Scalability

For a scalable system it is important to avoid having a central bottleneck that
limits extensibility. By adding new nodes and communication gateways
additional processing power and communication bandwidth can be added
almost without limit. Another argument is the cost of silicon. Because the cost
of manufacturing a chip is proportional approximately to the third power of its
die area, it pays off to use a larger number of smaller chips despite the fact
that a distributed solution usually requires more hardware than a centralized
architecture.

e Dependability
In distributed architectures it is easier to establish so-called error-containment
regions. It is possible to detect an error in a single or multiple nodes and
protect the rest of the system from corruption. Furthermore in a distributed
system node replication may be used in order to be able to tolerate failures of
nodes.

e Physical Installation

According to system developers it proved to be intelligent to integrate the hard
and software that controls a device, in particular a sensor or an actuator with
the device itself, resulting in increased reliability. A system that uses such
devices can be viewed as a distributed system.

2.2 Fault Tolerance

This section is dedicated to fault tolerance in real-time systems as it represents an
important aspect in the thesis. We introduce the concept of fault tolerance and the
various possibilities how to achieve it. The section also covers the detection of errors
and design strategies for highly dependable systems.

Fault, Error and Failure

First it is important to differentiate between the terms fault, error and failure as
proposed in [3] and [1]. A failure is an event that describes the inability of a system
to provide the specified or intended service. Failures are almost always consequences
of an unintended or incorrect internal state of a system which is called an error. The
cause of an error is called a fault. An example for a fault would be a defect memory
cell. Such a fault does not necessarily lead to an error, because the system might not
even use the specific cell. But when it does we have an unintended state of the
system, and therefore an error, as the data element that is written to memory
cannot be obtained correctly again. Of course such an error will probably lead to a
behavior of the system that does not comply with its specifications, for example an
incorrect calculation or output. This example shows that a fault may not necessarily
cause an error and an error may not cause a failure. The reverse, however, is true. A
failure always is the consequence of an error that is caused by a fault.

Fault Tolerance

The purpose of fault tolerance is to break the chain of events that lead from fault to
failure. Faults cannot be completely avoided as it is not possible to build hardware
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units that never fail. The idea of fault tolerance is to detect errors and mask or repair
them before the service delivered by the system suffers and therefore a failure
occurs. So the detection of errors is a key issue in creating a fault tolerant system,
because undetected errors normally lead to failures.

There are two basic strategies for error detection:

e Detection based on a priori knowledge

A priori knowledge can be knowledge of the code space as used with cyclic
redundancy checks (CRC), activation patterns of computations or any other
regularity in the temporal or value domain that can be compared to the actual
behavior of the system.

e Detection based on redundant computations

Redundant computation is possible in various ways: Time redundancy means to
execute the same software multiple times on the same hardware, whereas
when applying hardware redundancy it is executed on two independent
hardware channels. Another possibility is design diversity where different
software implementations are used on either the same or on diverse hardware.

After an error is detected, the system has to recover from it and reach an error-free
state again. In addition the propagation of the error must be avoided. Next is the
phase of fault treatment. If a transient fault, which is a fault that appears once and
disappears by itself, occurred, no treatment is necessary. A permanent fault of a
hardware device will require its repair or replacement.

Fault-Tolerant Units

A fault-tolerant unit (FTU) is formed by a collection of nodes. A node is a self-
contained unit that provides some functionality. An FTU is able to mask the failure of
a node. How many nodes are needed for an FTU depends on the type of failure they
produce. According to [1] the following three different failure modes are
distinguished:

e Fail-silent nodes

Fail-silence means that a node either produces a correct result or produces no
result at all. This is the optimal case as then an FTU consists of only two
identical nodes. Both nodes get the same input and either produce two or one
correct result when the FTU is operational. To guarantee fail-silence every node
must be designed in a way so that wrong results are detected and the node
does not output them.

e Triple-modular redundancy (TMR)

In this configuration fail-silence is not provided by the nodes. The failure mode
when a node might produce a wrong output is called fail-consistent. In order to
tolerate such a node failure three nodes are necessary. In addition to that a so-
called voter is required that compares the results from the three nodes and
selects the one that has been computed by the majority, which in our case is
two out of three nodes.



e Byzantine resilient FTU

To be able to tolerate a Byzantine failure of a node the FTU must consist of at
least four nodes. A Byzantine or malicious failure occurs when a node shows
contradictory faces of a failure to each operational node. In order to ensure that
four nodes are sufficient to tolerate such failures, additional requirements
concerning communication paths and time synchronization have to be fulfilled.
Every node needs to be connected to all other nodes of the FTU by two disjoint
communication paths. Before the malicious node can be detected, at least two
communication rounds need to be executed where every node sends a
broadcast message. In addition, the clocks of all nodes need to be synchronized
with a known precision.

Those three FTU scenarios show that it pays off to design nodes to be fail-silent or at
least fail-consistent, as this will be cheaper than having such a high number of
replicated nodes in most cases.

Systematic versus Application-Specific Fault Tolerance

There are two basic options in making a system fault tolerant. The systematic
approach implements fault tolerance mechanisms transparent to the application
software. This means that the application code does not need to be modified and the
application also is not aware that any fault-tolerance mechanisms are employed.
Typically this is realized by the replication of hardware units that run the original
application redundantly. The advantage of this approach is that those mechanisms
can be developed and tested independently from the application code and that it
avoids making the application more complex and therefore more prone to errors. The
major downside is that typically more hardware is needed for its implementation.
Application-specific fault tolerance requires modifying the application by integrating
error detection and fault tolerance functions on the application level. This results in
lower hardware costs at the expense of higher design and testing efforts in
application development. Since both approaches have their advantages often both
are used together in practice.

2.3 Giotto and the Timing Definition Language (TDL)

In this section Giotto is introduced as a language for embedded programming. Basic
Giotto concepts, in particular the fixed logical execution time (FLET) and the E
machine are discussed. The Timing Definition Language (TDL) that was used in the
realm of this thesis is conceptually based on Giotto and was developed to provide
improved syntax and programming tools.

2.3.1 Basic Giotto Concepts

Giotto provides a programmer's abstraction for the development of hard real-time
systems. It follows the time-triggered approach and is no real programming language
but rather a tool that lets the programmer specify the timing and communication
behavior of an application. One goal of Giotto is to contribute to a better
modularization of control software by separating the timing and communication
specification from the functionality implementation. Furthermore, the timing and
communication specification are separated from physical realization concerns such as
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hardware requirements and scheduling. This allows the developer to specify the
timing and communication behavior in a platform-independent way. According to [4]
the Giotto-based development of control systems is performed in three stages:

e Control design

This step consists of typical design efforts required for real-time control
systems, in particular the plant modeling and control law definition.

e Giotto program

Based on the previous step the timing and communication behavior of the
application is modeled. This most importantly includes the specification of
periodic software tasks and mode switches. A mode in Giotto is a collection of
concurrently executed periodic tasks that represent an operational mode or
state of a real-time application. A mode switch is a condition which triggers the
change of the current mode.

e Code for a specific real-time platform

When the target platform is fixed, the application is mapped to a specific
hardware and operating system. Also a computation schedule for the tasks on a
node and for communication must be calculated. It might happen that the
outcome of this step is that the desired target platform does not satisfy the
requirements of the application.

Synchronous and Asynchronous Language Constructs

The Giotto language contains synchronous as well as asynchronous constructs. Apart
from task and modes mentioned above, Giotto uses another important abstraction
called drivers. Drivers contain code for sensors and actuators which interact with the
physical world. The Giotto abstraction assumes that a driver is executed in logically
zero time and therefore is a synchronous construct. A task however consumes a non-
negligible amount of CPU time concerning the Giotto programming model, thus being
an asynchronous construct. It is not allowed to set actuators or to read sensors
within task code, as this would be a violation of the programming model.

Giotto Task

release event Logical Execution Time (LET) termination event

i

Logical{ active
, runnlngl /o778 running time
Physmal{ 4

S A4

release start suspend resume complete terminate
Figure 1 Giotto Task Model

Figure 1 illustrates the task model used in Giotto. Logically a task is considered active
during its whole period, although typically it only takes a fraction of that time to
actually execute it. Physically, tasks can be executed at any time by the scheduler of
the system and also might be preempted as shown in the figure above, as long as
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their execution is finished at the end of their execution interval. This interval is as
long as the period of the task and is called the fixed logical execution time (FLET) or
also LET like in the figure above. Drivers are executed at the beginning of FLET in
logically zero time, but physically they do consume a rather small amount of CPU
time, indicated by the green block in the figure.

Tasks communicate with other tasks and with sensors and actuators only via so-
called ports. Therefore ports can be seen as an interface that connects all entities in
the Giotto programming language. Ports are read and updated in a strictly periodic
and time-triggered way only at the beginning and end of the fixed logical execution
time of a task.

The consequence of the Giotto programming abstraction, especially of the FLET
concept, is a platform-independent description of the timing behavior of real-time
applications.

E Machine

The embedded machine implements the Giotto timing on a specific hardware
platform. It executes drivers and passes the tasks to the scheduler. It is an
interpreter for the so-called embedded code (E code) that is generated by the Giotto
compiler and contains the timing specification of the Giotto program. Because of the
simple instruction set of the E machine it is quite easy to port the E machine to
different platforms. The instruction set contains among others the following three
instructions [2]:

e Call driver instruction

This instruction executes a driver. It is blocked which means that the E-Machine
waits until it is finished before it continues to execute the next instruction.

e Schedule task instruction

The schedule instruction hands a task to the scheduler of the operating system.
The E machine does not schedule the task but just requests that it is scheduled
when CPU time is available. The exact time of execution is not controlled by the
E machine but by the scheduler of the operating system and the scheduling
algorithm that is actually employed. So this may result in different patterns of
task invocation on different platforms, but as long as every task finishes inside
its FLET interval, the timing behavior of the application remains unchanged. It
might happen that for various reasons this is not possible and a deadline
violation occurs. This can be avoided by a compiler that checks for time safety
on the platform concerned.

e Future instruction
The future instruction marks a block of E code for later execution.

An in-depth description of Giotto and the E-Machine can be found in [2] and [4].

2.3.2 Timing Definition Language (TDL)

TDL, as described in [9], is based on the Giotto concepts, but offers a more
streamlined syntax. Above all, TDL adds the module construct.
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A module packages multiple modes with their tasks, sensors and actuators together.
It enables the decomposition of a real-time application into smaller software
components and — as we will see later — simplifies distribution and the introduction of
fault tolerance.

Sample Module

The following example shows a TDL module that realizes a simple light controller that
controls a light with respect to a brightness value from a sensor.

module lightController {

sensor
int brightness uses getBrightness;

actuator
int light uses setLight;

public task calc [100us] {

input
int brightnessValue;

output
int lightvalue := 0;

uses calclmpl(brightnessvalue, lightValue);

}

start mode controlLight [4000us] {

task
[1] calc(brightness);

actuator
[1] light := calc.lightvalue;

}

The code starts with a definition of all sensors and actuators that will later be used.
The type int is an internal type of TDL, but there is also the possibility to define
custom types. A sensor or actuator declaration consists of an identifier and a name of
a function that implements the functionality. This function can be provided in any
programming language. Next comes a task definition including a specification of the
worst-case execution time (WCET), which is 100 microseconds here, the tasks input
and output ports and again a function calclmpl that implements the functionality of
the task. Finally a mode is defined with its period, which is 4000 microseconds here,
and invocations for tasks and actuators. Note that the sensor value is passed as a
parameter to the task as it has exactly one input port. The number in brackets
indicates the frequency of a task or actuator, i.e. how often it is invoked in one
period. The fixed logical execution time (FLET) of a task or an actuator is defined by
the mode period divided by the task or actuator frequency.
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A more detailed discussion of this example, especially concerning the integration with
functionality code, can be found in 3.5.3.

2.4 Time-Triggered Protocol (TTP)

An introduction to the Time-Triggered Protocol (TTP) developed at the TU Vienna is
given in this section. TTP is designed for fault-tolerant communication between nodes
in a distributed real-time system and provides services such as time synchronization
and membership service. Apart from explaining the protocol the section also presents
the tools and tool chain that are provided by TTTech for the development of
applications with TTP.

2.4.1 TTP Protocol

TTP is — as the name implies — a communication protocol that works in a time-
triggered fashion. There are two different variants of TTP: TTP/A is a so-called field
bus that is designed as a low-cost protocol for the connection of intelligent sensors
and actuators to a node. TTP/C is more complex and provides additional services
such as redundancy management and a more sophisticated membership service. It is
intended for the fault-tolerant connection of nodes of a distributed real-time system.
In this thesis the term TTP always refers to the TTP/C protocol.

TTP is a time-division-multiple-access (TDMA) protocol. TDMA is a commonly used
access strategy for communication busses. Time-division-multiple-access means that
a common media is shared by giving exclusive access to the media to one sender at
a time as illustrated in Figure 2. When using the Ethernet protocol for example, it is

Node B receive m receive

- receive receive m

v

v

v

Figure 2 Time-division-multiple-access strategy

not defined when a specific sender is allowed to access the media at runtime and
therefore it can happen that multiple senders send at the same time which results in
distorted und unusable signals. In such a scenario these collisions must be detected
and avoided, which is handled by the carrier-sense multiple access with collision
detection (CSMA/CD) strategy of the Ethernet protocol. In TTP such mechanisms are
not necessary since the assignment of sending slots for each node is done at design
time. This seems very impractical at first and indeed limits the possibilities of the
protocol, but when taking into account that typical distributed real-time systems are
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not required to be very flexible and mostly perform periodic tasks, this limitation is
feasible. At the expense of flexibility TTP delivers guaranteed bandwidth and features
for high dependability such as bus guardians. A so-called bus guardian is an
independent hardware device that allows access to the bus for the communication
controller of a node only at the exact interval it is allowed to send according to the
bus schedule, as illustrated in Figure 3. It protects the bus from "babbling idiot"
failures where a node keeps "talking" outside its sending slot and prevents other
nodes from communicating.

Faulty node

Bus Guardian

Bus signal

Figure 3 Bus Guardian Operation

The TTP protocol uses a number of constructs und concepts in order to realize fast
and reliable real-time communication between nodes. In the following those entities
are described as well as the relations between them.

Frame

A frame carries 1 to 240 bytes of user data in addition to protocol overhead such as
header and CRC information. The TTP protocol is not aware of what kind of data or
messages are contained in a frame. The contents of a frame have to be specified on
application level consistently throughout the system. Frames are delimited by inter
frame gaps that are needed by the TTP controller in order to distinguish between
frames and to perform calculations within the gap duration.

Slot

A frame is transmitted within a slot. A slot is a time interval in which only the node to
which the slot is assigned is allowed to send data on the TTP bus. The TTP bus always
provides two independent lines for communication which are called channels. The
frames sent on both channels do not need to be the same. A frame can either be
transmitted on only one channel to maximize throughput or on both to maximize
dependability by redundancy. Typically every slot is assigned to a single node, but
there also exists the possibility to assign a slot to a group of nodes, which is called
multiplexing.

Every node is required to send a frame at the beginning of its slot. The exact
instance of this transmission is used to calculate the clock difference of every node.
This difference is determined by every node of the cluster and transmitted to the
other nodes in its sending slot. Every node continuously corrects its clock on basis of
this information. The fact that every node is required to send a frame inside its slot is
also used to determine whether a node is still working properly, which is information
needed to provide the membership service. Again, every node sends its view of the
current state of all other nodes and so a consistent view of the membership in the
cluster is established. These two examples show that the strict and static nature of
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the protocol has clear advantages in reducing the required overhead for services such
as clock synchronization and membership service.

TDMA Round

A TDMA round is a sequence of multiple slots which might differ in their length. It is
important to note that the length of the TDMA round and the slots it consists of are
statically defined at design time and cannot be changed at runtime. As the TDMA
round is repeated over and over again, it defines the basic communication pattern of
the protocol and consequently the share of the total transmission time each node
gets. The reason for this restriction with respect to flexibility is to keep the bus
guardian as simple as possible.

Cluster Cycle

A TTP cluster cycle consists of multiple TDMA rounds as indicated in Figure 4. It can
be seen as top-level construct that represents a cluster mode and is repeated all the
time. As can be seen in the figure, the frames that are sent in a TDMA round and
consequently the messages contained in them can differ throughout the cluster cycle.

Slot A | Other slots A Other slots A Other slots A Other slots
Ch A [m1m2m3 m1,mé,m8 ml,m2,m4 m1,m5m6
Ch B [m1,m2m7 mZ1,m6,m8 mZ,m2,m4 mZ,m5,m6
TDMA round 1
Cluster Cycle

Figure 4 TTP Cluster Cycle

As the TTP protocol is not aware of messages inside frames the TDMA slots differ
from each other regarding their length. When multiplexing is used, a slot is shared by
a collection of nodes. In this case it is required that every slot is assigned to a node
and every node sends periodically. So when for example three nodes share a slot in a
cluster cycle that consists of four TDMA rounds, a valid assignment would be if one
node gets slot 1 and 3, one node gets slot 2 and one node gets slot 4.

MEDL

All the information of "who sends what at what time" is stored in a data structure
called the message descriptor list (MEDL). It can be distinguished between an
abstract MEDL, which represents a system-wide model of the communication pattern
of the bus, and a personalized MEDL derived from it that is unique for every node of
the cluster. The latter contains node-local information, such as the serial number of
the corresponding node, in addition to the bus schedule including information on the
TDMA round, cluster cycle and different cluster modes. The personalized MEDL is
stored in the memory of the TTP communication controller of each node which
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handles the transmission of messages on the bus independently from the host
computer.

2.4.2TTP Tool Chain by TTTech

TTTech provides two main tools for application development for their hardware in
order to realize the so-called two-level design approach which consists of the cluster
and the node level design. The idea is that the system integrator knows about all
functions and therefore about the bus messages that are needed for them. The
cluster design specifies the interfaces between the nodes and the cluster in both the
value and time domain. After this is done, the outcome can be passed on to various
sub-manufacturers which design specific nodes of the cluster. The composability of
the nodes is guaranteed because the bus schedule is already generated in the first
design level. The reason for having those two levels in the design of the system is
the development process and requirements that are found in the automotive
industry, especially between car manufacturers and their suppliers. Typically, a car
manufacturer plays the role of a system integrator by hiring different component
suppliers to deliver certain subsystems. The clear separation of concerns inherent to
the two-level design approach leads to defined responsibilities of all parties involved
while reducing the risk of integration. Another important benefit is the possibility for
the subsystem manufacturers to hide the information of how the components are
actually implemented, as the system integrator does not need to know this for a
successful integration and operation of the whole system.

According to TTTech the following distinct steps have to be taken in order to design a
distributed and fault tolerant real-time application:

e Application design (including control algorithms)
e Communication and fault tolerance requirements
e TTP/C cluster schedule design

e Implementation

e Test/verification

In the following the main tools of the TTP tool suite for the development of
applications based on the TTP protocol are described.

TTPplan

TTPplan is the cluster-level development tool for designing the bus schedule of the
cluster. Every message which is sent from every node has to be specified and an
automatic scheduler then generates a bus schedule for these requirements. Also fault
tolerance properties such as replication, reintegration, and redundancy must be
specified at this development stage. The outcome of TTPplan is a cluster database
with a cluster schedule and a MEDL (message descriptor list) for the TTP chip of each
node which contains the cluster schedule. The MEDL specifies exactly when a node is
allowed to send which message and when messages from the other nodes can be
received, so every MEDL contains the cluster schedule from the view of a specific
node.
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Figure 5 TTPplan Screenshot

TTPplan uses an object model to represent the TTP cluster and all objects it consists
of such as hosts and messages. The graphical user interface lets the user create and
modify this model by either using a "Step-by-Step Guide" that guides the user
through the process to create an application in about ten steps. Another possibility is
to directly modify the object model in the "Pilot" view. Figure 5 illustrates this view
with a screenshot of the user interface with the object model in the background and
a dialog for modifying objects in the foreground. Below the menu and the toolbar
there are a number of tabs that allow switching between various views, including the
guide mentioned above, the pilot view and a view where errors are displayed. The
window in the foreground displays the required and optional attributes for the
"Cluster" object. The current value of the attributes is displayed and can be changed.
The bottom of the window contains help on the selected attribute, whereas on the
right part error information is displayed in case improper input is detected. At the
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very bottom of the main window status information is displayed on the current
operation the tool executes.
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Figure 6 TTPplan Schedule Editor Screenshot

After the object model is checked for validity and consistency, the cluster schedule
generation can be invoked. As Figure 6 illustrates the schedule and all messages it
contains can be viewed with a lot of detailed information. The cluster schedule is
visualized by means of colored blocks that symbolize messages. The area marked
with the darker yellow (Nodel_ Slot in Round 1) illustrates what a host sends in its
slot. The selected slot is magnified below in the area titled "Selected Round-Slot". It
is possible to select a single message and view detailed information on it such as its
name and period at the bottom of the window. The interface also offers the user the
ability to alter the schedule by drag and drop. As a final step the MEDLs for every
host of the cluster is generated and written to file.
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TTPbuild

TTPbuild requires a cluster database created by TTPplan that contains the object
model and also the cluster schedule before it can be used to design a single node of
the cluster. With TTPbuild the user can specify every periodic task that should run on
a node and the messages it consumes and produces. The messages that are sent by
a node on the bus were already specified and cannot be changed in this development
stage following the two-level design approach. For every task a so-called time budget
must be given, which consists of the worst-case execution time (WCET) of a task plus
some additional overhead needed by the operating system. Just like in TTPplan a
"Step-by-Step Guide" is available to be guided through the creation of a valid host
object model. Figure 7 shows the user interface of TTPbuild, viewing the object model
of a node. The interface is very similar to that of TTPplan, which was described
above. The object model with the attributes of the objects can be viewed and edited
in the exact same way.

TTTech - TTPbuild host Nodef, cluster Demo_Cluster (=13
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Editing Node1
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Figure 7 TTPbuild Screenshot

After a valid and consistent object model was created a task schedule can be
generated. On basis of the cluster schedule, the time budget of the tasks and
information on the target hardware TTPbuild tries to create a feasible task schedule
for the node. As illustrated in Figure 8 the task schedule can be viewed to see at
what exact time every task is executed. The numbers before the name of the task
chains indicate the time of invocation in micro seconds relative to the beginning of
the application mode period. TTPbuild combines a number of tasks to a task chain in
order to reduce the overhead caused by switching between tasks. When expanding a
task chain by clicking on the black triangle, all tasks of which the chain consist are
displayed together with information on their time budget and deadline. By further
expanding all messages a task sends on cluster and node level are shown. TTPbuild
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displays all tasks that will actually be executed on a node, including the ones the tool
adds automatically to execute functions that perform the transmission of messages
on the bus and clock synchronization.
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Figure 8 TTPbuild Node Schedule Viewer

TTPbuild generates a static schedule table with all user defined tasks and with
system tasks used for time synchronization and the FT-Com layer. The fault-tolerant
communication layer (FT-Com) is automatically generated C code for handling the
reception and transmission of typically redundant or replicated messages. Another
outcome of the tool is an OS configuration file for the TTTech operating system TTPos
in which the schedule is specified. All the developer has to do then to get a working
binary for the target platform is to provide the task functionality code in C.
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An important component in the TTTech tool chain is the fault-tolerant communication
layer FT-Com. As Figure 9 illustrates it acts as a layer and interface between the
communication layer and the application layer. The communication layer consists of
frames and messages on the physical TTP bus and is determined by the MEDLs of the
participating hosts with their TTP controllers. It can be seen that for example
message ml that is consumed by the task tl is transmitted four times on the bus.
This is due to redundant transmissions on both TTP channels and because it is also
replicated, which means it is produced by two hosts. The FT-Com layer merges those
four versions of the message into one that is made available to the task that
consumes the message. This merging is determined by an algorithm called the
replica-deterministic agreement (RDA) algorithm. Depending on the application the
FT-Com layer might calculate the average of the two replicated copies or just take
any valid instance of it. Furthermore the FT-Com layer enables the application to
detect errors by providing a message status for every message that is an integer
value that indicates how many instances of the message were received correctly. A
detailed description of how application code interfaces with the FT-Com layer can be
found in 3.5.3.

The FT-Com layer is implemented as automatically generated C code that is created
by TTPbuild. It therefore is specifically tailored to the actual application and the
messages, tasks and RDA algorithms it uses.
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TTPos

TTPos is an operating system for real-time systems that is provided by TTTech for
their tool chain [5]. It is compliant with the OSEKtime operating system specification
and is strictly time-triggered. A notable aspect is that the TTPos operating system
has no mechanism to provide scheduling at runtime. The task activation table is
planned and scheduled offline by TTPbuild and TTPos just executes that table
periodically. The table must contain a schedule that ensures that no resource sharing
conflicts or deadline violations occur.

Application Software

ErSL TTP-Build
' Node Design
HW TP TTP-Plan
Controller Cluster Design
. Y J
"-,Y.r" '\r
anlina offline

Figure 10 Position of TTPos in TTTech's TTP Tool chain

TTPos is tightly integrated in the TTP tool chain, as Figure 10 illustrates. It depends
on TTPbuild that outputs a configuration file that contains the task schedule. This
schedule not only contains the application tasks but also a task for time
synchronization and tasks that execute the FT-Com layer. TTPos is also tightly
coupled with the FT-Com layer that uses TTPos to access the hardware and provides
the application with an interface to access the TTP bus.

TTPload

TTPload is the download tool in the TTTech TTP tool suite. It is used to download the
MEDLs to the communication controller and the application binary files to the
program flash memory of each host computer. All this is done through a special
hardware box called the TTP monitoring node that acts as a gateway between
standard Ethernet and the TTP bus and protocol. The monitoring node is connected to
the TTP bus as a passive device that listens on the bus but does not send anything.
All MEDLs and application files can be downloaded conveniently in one step to all
nodes without the need to plug a cable into each of them.

The screenshot in Figure 11 shows the main screen of TTPload. All nodes are listed
and it can be selected if the MEDL and application should be downloaded. The
monitoring node is listed here as well, as it also needs a correct MEDL for the
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Figure 11 TTPload Screenshot

application it should monitor to know when which messages are sent by the nodes.
TTPload also provides a function for querying the nodes to check if they already have
a current version of the MEDL and application.

TTPview

TTPview enables the user to display all data that is transferred over the TTP bus. It
also uses the monitoring node to access the TTP bus via Ethernet like TTPload.
TTPview needs a cluster database created by TTPplan because it needs the
information of what messages are transferred at what time. Figure 12 shows its
graphical user interface. On the left all entities of the loaded cluster database that
should be monitored can be selected and dragged to the right window. Among the
selectable entities the actual values of the bus messages along with status
information on them and global status values such as the current clock or the
membership vector. There are various different ways to view the values, from simply
displaying the numerical value to a gauge view and graphs to see the change of a
value over time. After this step online monitoring can be started with the first button
from the left at the bottom of the window and all values will be updated in real time.
There is also the possibility to record everything that is transferred on the bus for a
later offline analysis by pressing the record button indicated by a red dot on it. The
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Figure 12 TTPview Screenshot

other buttons at the bottom are used to store and load recorded data and to

playback them forwards, backwards or step-by-step.

Although TTPview is limited to viewing bus traffic and cannot be used to access any
values or variables inside the node's CPU, it is a valuable tool for debugging and

development purposes.
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Chapter 3
Tool Chain for the Integration of TDL and the
TTP Tools

3.1 Tool Chain Overview

An overview of the complete tool chain for developing TDL programs for the TTP
hardware is presented below. All entities in the tool chain are described together with
their order and connections between each other.

Figure 13 gives an overview of the tool chain. In the following all entities of it are
summarized. A more detailed description of the key items can be found in the next
sections.

TDL Code

This is a collection of files that contain the TDL program of the application. In the
current implementation of the TDL compiler a separate file for each module must be
used. Typically the modules are connected by public statements on one hand to
indicate tasks and sensors that are available to other modules and import statements
on the other hand that make these public construct accessible inside another
modules. The additional platform specification has to be provided in a separate
property file.

Property File

Our TDL compiler plugin needs specifications in addition to the TDL program. In order
to be able to provide these to the plugin an additional file is used. It is a standard
Java property file with name-value pairs. The information that must be specified
consists of information on how the TDL program should be distributed among nodes,
fault-tolerance specification and platform-specific properties that are specific to the
TTTech hard- and software. In addition to that the file also contains a number of
paths to the programs that the plugin needs to call such as the binaries of the TTP
tools.

TDL Compiler

The TDL code is compiled using the existing TDL compiler. The main function of the
compiler is to parse the syntax of the modules and to generate E code for each
module. The TTP plugin only uses the former and does not need the generated E
code. It only uses the compiler to get access to the modules in an appropriate data
structure via the compiler's plugin interface. The reason for bypassing the use of E
code is the static nature of the TTP platform. With the TTP tools every task is
statically scheduled at design time and this schedule cannot be changed at runtime.
Thus, the interpretation of E code at runtime would not make sense. The execution of
TDL drivers for reading sensors and updating actuators is managed by the
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Figure 13 Tool Chain Overview

introduction of a periodically scheduled E machine-like task that is generated by the
plugin.

TDL Compiler Plugin

The core element of the tool chain is the TTP plugin for the TDL compiler. It accesses
the parsed modules from the compiler and controls the transformation of them into a
TTP application. To accomplish that it has to generate scripts for the TTP tools and
execute them. Furthermore it has to generate glue code to link the functionality code
of the tasks and drivers to the operating system TTPos and the FT-Com layer
provided by TTTech. This glue code does also periodically execute an E machine-like
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task that handles the execution of drivers for reading sensors and updating
actuators.

TTPplan Script

The plugin generates a file that contains a script for the TTP tool TTPplan. It contains
commands that realize the timing and functionality that the TDL modules specify on
cluster level. This includes communication between nodes of the cluster, the
distribution of modules among nodes and fault-tolerance properties.

TTPplan

TTPplan is the cluster design tool of the TTP tool suite and the first tool that is
employed by the plugin. It is used to design a global schedule for communication
between nodes. It is executed with a script as input that controls the generation of a
suitable schedule that corresponds to the TDL modules and their distribution among
the individual nodes. The communication schedule is stored in a cluster database file
and for each node a separate message descriptor list (MEDL) is generated that
contains the bus schedule.

MEDLs

For each node a message descriptor list (MEDL) is generated by TTPplan. It contains
the relevant information for each node which is when it is allowed to send what data
and when it can receive data from other nodes. The MEDL file must be downloaded to
the TTP communication controller of each node which completely controls the
communication behavior of it. For the downloading process the TTP tool TTPload is
used.

Cluster Database

The cluster database file created by TTPplan contains all information that was
specified in TTPbuild by the script for it and in addition the generated cluster
schedule.

TTPbuild Script

This script is a file created by the plugin for every node. It contains commands that
realize the timing and functionality of the TDL modules on node level. This includes
the implementation of the E machine-like task and the execution of sensors,
actuators and tasks.

TTPbuild

TTPbuild is used for node design. It relies on the cluster database with the generated
communication schedule. The plugin creates one script per node and then invokes
TTPbuild for each of them. The script contains commands that most importantly
create all tasks that are supposed to run on every node. These tasks consist of tasks
that are defined in TDL, the E machine-like tasks that are generated by the plugin
and tasks that TTPbuild adds to perform time synchronization and execute the FT-
Com layer that handles the sending and receiving of messages on the bus. TTPbuild
creates a task schedule and the FT-Com layer as output.
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TTPos Configuration Files and FT-Com layer

These are a collection of files that TTPbuild creates for each node. The TTPos
configuration files are C code that contain a table that represents the complete task
schedule of the node. It is intended to be used with TTTech's operating system
TTPos. The FT-com layer is also a collection of C files generated by TTPbuild. It
provides the application with the required functions to send and receive messages on
the bus. It handles the fault-tolerant transmission and reception of messages
according to the properties specified in TTPplan and TTPbuild.

Glue Code and E Machine-like task

These files are all created by the TDL compiler plugin for every node. The glue code
maps the functionality code to the operating system and the FT-Com layer. It also
contains the E machine-like task that has two purposes: One is the calling of drivers
for sensors and actuators and the other is the relaying of messages in order to
maintain the FLET property of TDL.

Functionality Code

The functionality code must be provided for each module and contains the
implementations of all tasks and drivers that are used in the TDL code. It is not
specific to the TTP plugin and is intended to work with other platforms using the C
language as well. The naming convention for the functionality code for an example
module myModule.tdl is myModule.c for the C code containing the task and driver
code and myModule_h for the corresponding header file. Inside the functionality code
other header files can be referenced with an include statement in order to be able to
use for example one file pair drivers._h and drivers.c with driver code for sensors
and actuators by multiple modules throughout the whole application.

C Compiler

The C compiler compiles and links the TTPos code with its configuration files, the FT-
Com layer, the glue code and the functionality code and eventually creates a binary
file that is ready to be downloaded to the target platform. As compiler the Diab
C/C++ Compiler for PowerPC by Windriver is used, as it is recommended by TTTech
and also shipped with their development cluster hardware.

Hardware

As target hardware everything that is supported by the TTP tools can be used. A
typical hardware setup consists of a collection of TTP nodes together with a special
monitoring node that acts as a gateway between standard Ethernet and the TTP
protocol. This node can be used to monitor all data that is transferred on the bus and
to download MEDL and application files to the individual nodes. Monitoring can be
accomplished by TTPview, whereas downloading of code and MEDLs can be done by
TTPload.
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3.2 TDL Compiler

This section is dedicated to the current implementation of the TDL Compiler that has
been used for this thesis. Its functionality is described together with its plugin
interface.

The version of the TDL Compiler used for the thesis supports multiple modules to be
combined with the use of the import and public keywords. Functionality such as the
output ports of tasks and sensors can be made available to other modules by using
the public keyword. This is the only distribution aspect the compiler supports to
date. It deliberately does not handle the platform specific assignment of modules to
nodes or any kind of fault tolerance functionality.

3.2.1 Calling the Compiler

The compiler is invoked at the command line as follows:

Java emcore.tools.tdlc.Compiler [options] [TDL Ffiles]

The following options are available:

-d <destination directory>

This option specifies the directory to store the generated files. Typically those are E
code files for every module. This directory is also passed on to a plugin which
typically also places generated files in this directory.

-java

This option specifies to use Java as target platform.
-ansic

This option specifies to use ansi-C as target platform.
—-Cpp

This option specifies to use C++ as target platform.
-platform <class name>

This option lets the user specify any Java class as a platform plugin. This is how the
TTP plugin presented in this thesis is integrated.

The compiler always produces one E code file for every TDL module no matter what
target platform is specified. For every platform an individual collection of additional
files is generated that typically is glue code for mapping the functionality code to the
specific properties of the target platform. In the case of the TTP plugin additional
software — the TTP tool chain — is employed to generate those files and to eventually
produce a working system running TDL code.
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3.2.2 Plugin interface

A platform plugin is realized by a Java class that implements the Platform interface.
The only method in this interface is the emitCode method which must be
implemented like this:

public void emitCode(String destDir, Module module) throws Exception

This method is called for every module the compiler processes. It has the destination
directory that was provided at the command line for the compiler and the module as
parameters. The module object contains the abstract syntax tree of the TDL module
that was parsed by the compiler. A plugin typically analyzes the module, generates
files and puts them in the destination directory.

3.3TTP Tools

This section explains the relevant TTP tools for the integration with TDL in detail,
focusing on their programming interface and the object model that the main tools
TTPplan and TTPbuild use. All basic steps a user has to go through to get a correct
model and therefore a working TTP application are explained briefly. Furthermore the
script language of the tools is demonstrated with simple examples.

Both TTPplan and TTPbuild have two modes of operation: They can either be started
in an interactive mode with a graphical user interface or in batch mode without any
interactive interface and textual output only. With a few exceptions all functions are
available in both modes.

Both applications also share their basic architecture of using an object model for the
internal representation of the data and also as part of their user interface. A TTP
cluster in TTPplan and a TTP node in TTPbuild are composed of a nhumber of objects
with relations between them. Every object also has a number of mandatory and
optional attributes.

3.3.1 TTPplan

Figure 14 shows the object model of TTPplan. The main object of the model is the
cluster object. It represents the whole system and has attributes that specify system-
wide properties. A cluster consists of multiple hosts that all must be given a name.
Here the number of hosts in the cluster is defined and for every host the developer
later has to create a host object model with TTPbuild. A host in the TTP tools is a
node of the network that has computational and communicating capabilities. Another
key object is the subsystem. It is the unit of distribution and replication and is used
for the packaging of messages. Consequently a subsystem is linked to a number of
messages. A message represents a message on the TTP bus. In this development
stage it is only defined which messages a subsystem sends, not which messages it
receives. As the reception of messages does not influence the cluster schedule,
because of the broadcast nature of the bus, it is sufficient to specify reception later
on node-level. Subsystems are also linked to hosts and by this it is defined what
functionality is executed on which host and if and how subsystems are replicated, as
it is possible to assign a subsystem to multiple hosts. All this associations are later
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Figure 14 TTPplan Object Model

also available when designing a single host with TTPbuild and cannot be changed
then.

A detailed description of all relevant objects in TTPplan for the integration with TDL
can be found in 3.5.1, whereas a complete specification and definition is contained in

[6].

Sample Script

The scripting language of TTPplan and also TTPbuild consist of a number of
commands that (D) control the tool itself, typically  with the
TTA.Application_Command.run command that for example performs file handling
commands or initiates the generation of schedules, or (2) are used to create and
modify the object model of the tools. The commands are followed by a number of
parameters in parentheses. Strings need to be enclosed in single quotes. Normally
the parameters need to be formatted in the required type for the parameter, i.e.
strings have to be quoted but integer values are unquoted. However, there is a so-
called raw mode, indicated by the parameter raw=1, that requires every parameter to
be formatted as a string. This mode is especially needed for attributes of objects that
only have a defined set of valid values.

The following lines of code illustrate what a script for TTPplan that creates an object
model looks like. It is only an excerpt that shows the beginning and end of the script
and as an example the creation and linking of a subsystem and a message.

TTA.Application_Command.run ("File.New", "myCluster"™)

TTA.Subsystem.define ("mySubsystem®™, reintegration_type =
"Reinit_Reintegration®, raw=1)
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TTA.Message.define ("myMessage®, agreement = "RD_1 valid®, init _value =
1%, raw=l)

TTA.Subsystem _sends_Message.-add (TTA.Subsystem.instance ("mySubsystem®),
TTA_Message. instance ("myMessage®))

[---1
TTA.Application_Command.run("Schedule._Make new schedule®)

TTA.Application_Command.run("Schedule.Make MEDLs")

TTA_Application_Command.run(*File.Save cluster as ...", "myCluster.cdb™®)

The first line creates a new cluster database with the name myCluster. Then a
number of statements follow that define every object and link in the object model
including their required and optional attributes. As an example the above statements
create a subsystem mySubsystem and a message myMessage, together with a link
that defines that the message is sent by the subsystem. A complete list of commands
used by the plugin can be found in 3.5.1. The last lines tell TTPplan to create a
cluster schedule and to make the message descriptor lists (MEDLs) for each node.
Finally all data is saved in a cluster database file that is indicated by the ending .cdb.

Script Execution

A script is executed by calling the batch version of TTPplan with the —script option,
providing the name of the script as parameter. So a script called sample.cmd would
be executed by calling

ttpplan_batch -script=sample.cmd

in the directory where sample.cmd resides. The program outputs information on what
it does to the console. This output may also contain error information in case of a
syntax error or when trying to generate a schedule for an incorrect or inconsistent
object model. In the latter case it is advisable to load the faulty object model with
the interactive version of TTPplan, invoke the integrated check for object model
errors and review the output. This is possible because TTPplan also writes the object
model to the given file when the script execution fails.

3.3.2 TTPbuild

Figure 15 illustrates the object model of TTPbuild. Node design with TTPbuild relies
on the cluster design and consequently a cluster database file from TTPplan is
required before the user can begin using the tool. There are some objects in the
object model that exist in both tools. These are the cluster mode, host, subsystem,
message and message type objects. The instances of those objects are copied to the
node database and cannot be deleted or changed as such an operation would
contradict the cluster database that is shared by all nodes of the cluster. The creation
of additional instances of the mentioned objects is allowed and often necessary,
though. An example would be a message that locally connects two tasks with each
other and is not visible to other nodes as it is not transferred over the TTP bus. Apart
from the mentioned objects the key object in this development stage is the task. A
subsystem runs one or more tasks to realize certain functionality. A task uses
messages to communicate with other tasks either locally or remotely via the TTP bus.
Exactly one task of a subsystem is required to send the message that was already
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assigned to be sent by the subsystem in TTPplan. Every task runs in an application
mode that represents a state of operation of the host. This object is not that
important due to the limitation of only being able to use a single application mode in
the current version of TTPbuild. A detailed coverage of all relevant objects and their
relations with regard to the integration with TDL is presented in 3.5.2. A complete
description of the object model of TTPbuild can be found in [8].
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uses
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Figure 15 TTPbuild Object Model

Sample Script

The script language basically uses the same constructs as that of TTPplan which was
explained above. The following is a sample script that creates an object model using
the batch version of TTPbuild. It includes the complete beginning and ending of a
typical script, but contains only a fraction of the actual code that would create a
complete object model.

TTA.Application_Command.run("Fille.New node ...", "myNode”,
"myCluster.cdb®)

TTA_Node .App_Task.define ("myTask®, time_budget = 100, period = 4000,
deadline = 150, phase = 0)

TTA_Node.Task uses Message.add (TTA.Node.App_Task.instance ("myTask"),
TTA.Message. instance ("myMessage"), access _type = "agreed”, raw=1)

TTA.Node.Task uses Message.link ("myTask®, "myMessage®).set (sends =
" no®, raw=1)

yes®, receives =

[---1

TTA.Application_Command.run("Schedule_Make new schedule®)
TTA.Application_Command.run("Schedule.Generate code")
TTA.Application_Command.run("File.Save node as ...", "myNode.ndb")

This first line creates a new node database by assigning a name and providing the
cluster database file myCluster.cdb on which it relies. The next three statements
define the task myTask and link it to a message myMessage. It can be seen that the
message is sent, but not received by the task. After a number of other lines that
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create a complete and consistent node object model, the next command tells
TTPbuild to create a task schedule for the node. After successful scheduling, C code
files are generated that consist of a file that contains the node schedule in form of a
configuration file for the operating system TTPos and files that implement the FT-
Com layer. Finally, the object model is saved to a node database file that is indicated
by the ending -ndb.

Script Execution

The execution of a script works identical to TTPplan and is invoked by calling the
batch version of TTPbuild with the —script option and providing the script file name

as parameter:

ttpbuild_batch -script=sample.cmd

Just like TTPplan, the tool then outputs information on the progress and possible
errors to the console. In case of an error it is an advisable strategy to load the faulty
node database to the interactive version of TTPbuild and analyze it there with the
provided error checks.

3.4 Fault Tolerance Aspects

The fault tolerance aspects of the toolchain are explained in detail in this section. The
functions that are provided by the TTP tools are analyzed and ways for achieving
fault tolerance and error detection in TDL are suggested.

One of the goals of the integration of TDL with the TTP tools was to gain experience
in how platform-dependent fault tolerance can be harnessed in a TDL program. The
TTP protocol and corresponding tools provide various fault tolerance mechanisms in
hard- and software. Most of these mechanisms realize systematic fault tolerance that
do not require application awareness. The use of the TTP bus alone does not make
the whole application fault tolerant, but it transparently takes care of the
transmission of messages in a safe, fault-tolerant and consistent way. This is
achieved by the bus guardian, the redundant communication channels and the
membership service that all are hard-coded on the TTP communication controllers
and verified to work reliably. Those features are covered in more detail in 2.4.1
above and [7].

On top of the TTP bus protocol layers, the TTPos operating system and the fault-
tolerant communication layer (FT-Com) provide additional fault tolerance features.
Those are controlled by the two design tools TTPplan and TTPbuild, that are used to
configure them and eventually also generate the code that implements them.
TTPplan creates MEDLs that determine the behavior of the TTP communication
controller chips and TTPbuild generates the code for the FT-Com layer.

The idea in the integration of TDL with the TTP tools is to come up with a way of
describing what fault tolerance mechanism to apply as an annotation to the TDL
language.
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Replicated Modules

A module is the top level construct of TDL that combines multiple modes and their
tasks to form a functional unit. A TDL module represents the unit of distribution. This
means that a single module cannot be split up by distributing parts of it among
multiple nodes of a distributed real-time system. The fact that a module provides a
service with well-defined input and output also makes it suitable as a unit of
replication. A module that is replicated and gets exactly the same input as the
original module will consequently also produce the same output. This is guaranteed
by the exact specification of the timing behavior that is implemented by TDL and
reliable time synchronization between the nodes of the cluster provided by the TTP
protocol. Indeed there is a quite similar construct to the module used in the TTP tools
called the subsystem. A subsystem is "the basic unit of packaging software
components; as such, it is the unit of distribution, replication, and composability" [6].
All this leads to the conclusion that it is feasible to associate a TDL module with a
subsystem in the context of the TTTech TTP tools. The TTP tools provide the ability to
replicate subsystems and distribute them among the nodes of the TTP cluster. What
must be provided to support replicated TDL modules is a facility to specify their
distribution among nodes together with the ability to assign a module to multiple
nodes, as it is possible for a subsystem with the TTP tools. The replication of modules
also raises the issue of how to decide what the actual output of a module is when the
replicas produce outputs that differ from each other, which might be due to a failure
of a node. So what also must be specified is a so-called replica-deterministic
agreement (RDA) algorithm that determines the actual value consistently for all
modules that access the output of a replicated module.

Details of the mapping of modules to subsystems are discussed in 3.5 below,
whereas the specification of the distribution of modules is described in 3.6.

Redundant Messages

When mapping TDL modules to the objects in the TTP tools for every public port of a
task a message on the TTP bus is generated, as we will see below in section 3.5. This
is necessary as the module that uses the port might be located on a remote node.
The TTP bus always is equipped with two independent communication lines, called
channels. The TTP tools offer the possibility of transferring messages redundantly on
both channels in order to tolerate a fault of one of them. Of course it may also be
desirable to use both channels independently for maximized data throughput. It
makes sense to let the user decide what level of safety should be applied to every
public output port of a TDL task. How this specification works is discussed in 3.6
below.

Application-Specific Fault Tolerance

The two fault tolerance aspects above are a good example of systematic fault
tolerance as described in 2.2 in the previous chapter. The TDL application is not
aware that the values of ports are transmitted redundantly or that modules are
replicated and executed on multiple nodes. But for some applications it is beneficial
to make them aware of the status of the fault tolerance mechanisms applied. The FT-
Com layer of the TTP development tools provides a message status that indicates the
current status of replication by providing the number of online replicas. It is
implemented as an integer value that is O when no replica is operating correctly and
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equals to the number of replicas that produce valid output otherwise. Making this
value accessible inside TDL modules enables them to react to the failure of a module
and for example trigger an emergency shutdown or inform the operator of the
system that a node has to be repaired or replaced.

The integration of the message status function in TDL is realized as a special kind of
sensor. To avoid changing the TDL syntax and consequently change the
implementation of the compiler, a special driver name with the prefix REPL_ is used.
It is followed by the name of a public output port of a task in the same or a different
module. Consider the following example:

sensor
int lightValue messageStatus uses REPL_lightValue;

This TDL sensor declaration assigns the message status of the public task output port
lightValue to the sensor named lightValue messageStatus. The sensor value can
be used in the TDL program as a normal sensor as input ports for a task or directly
as input for updating an actuator.

For a detailed description of the implementation of this feature read on in section
3.5.3 below.

3.5 Mapping of TDL to TTP

This section contains various aspects of the mapping of TDL modules to the TTP tools
in order to execute them on the TTP platform. In the beginning the realization of the
E machine-like task is explained, with special focus on the maintenance of the FLET
property of TDL. Also an overview is given on the possibilities of mapping TDL
constructs to the TTP tools. This is followed by subsections containing an in-depth
description of how to map TDL modules to the object models used in the TTP tools.
All objects in the model are described together with a procedure of how to generate
them out of a TDL program and corresponding property file. Furthermore the glue
code that links the TDL functionality code with the TTP operating system TTPos and
the handling of the type mapping between TDL and the TTP tools is explained.

E Machine Implementation

In [2] an interesting statement concerning the implementation of the E machine can
be found:

"The E machine is a virtual machine. In an actual implementation of the E machine,
E code need not be interpreted, but may be compiled into, say, C code, or even
silicon.”

Indeed, when considering the nature of the TTP tools it does not make sense to have
an E machine implementation that interprets E code. This is due to the lack of a
scheduler in the operating system TTPos and the lack of a file system that would
allow to load the E code file. TTPos only gets a pre-planned schedule by TTPbuild and
dispatches the tasks according to this scheduling table. The schedule is static and
planned at design time by TTPbuild and it is not possible to make any changes to it at
runtime. So this fact makes the "schedule" instruction of the E code, which hands a
task over to the scheduler, quite pointless. However we do need the "call" instruction
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of the E code to execute drivers for sensors and actuators. The solution is to realize
some parts of the E machine offline and create a periodic E machine-like task that
performs the other tasks that have to be done at runtime. The offline part is the
scheduling of tasks and bus messages and the implementation of the FLET
semantics. This is done by generating a bus schedule with TTPplan and a suitable
task schedule with TTPbuild as described below. The runtime part handles the
execution of drivers for reading sensors and updating actuators and also contributes
to the realization of the FLET property by relaying messages. The interpretation of
the MEDLs by the TTP controllers can actually also be seen as a runtime task that
originally is meant to be carried out by a standard TDL E machine.

Maintaining FLET

The main challenge of this plugin part was to maintain the FLET property of TDL, as it
was explained in 2.3 above. Sensors have to be read at the beginning of FLET and
actuators have to be updated at the end. To ensure this, a periodic E-machine-like
task was introduced that is scheduled at the beginning of each FLET period and that
executes the driver code for the actuators of the previous FLET period and the
sensors of the next one. Local messages are generated for interfacing between the
tasks and the E machine-like task. But still there might occur a violation of the FLET
property when a task sends a message over the bus and it arrives before a task that
uses this message is executed. This might happen especially if the actual CPU time
consumption is short in comparison to the FLET length. In this case the receiving task
has access to a value that should not be available to it at this point of time.

FLET { FLET )

Producer I\| FT- | | Producer |1\ FT- |
Task [/ Com Task /| Com |

Node 1

2 FT- I\ Consumer 2 FT- LN/ Consumer
Node 2 TCom—/ Task || | Com | Task

Figure 16 FLET is violated

Figure 16 illustrates such a scenario with a producer task that produces some value
that is consumed by the consumer task. The FLET indicated at the top of the drawing
applies to both tasks and therefore a value produced in one FLET should not already
be available before the end of the FLET. Such a violation of FLET is not unlikely as
TTPbuild actually tries to schedule tasks in a way that minimizes the time between
message arrival and task execution to minimize the delay time. This is of course not
correct for a TDL implementation and so the only way of maintaining the FLET is to
pass messages through the E machine-like task on sending, receiving or both.
Because messages can only be sent by tasks that are linked to the subsystem that is
specified to send the messages in TTPplan and tasks can only be linked to one
subsystem, it would require one E machine-like task per subsystem to pass
messages that are sent through it. This would get quite complicated and would
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produce some overhead because of the fact that every task takes at least 75
microseconds due to context switching time. A better solution, and also the one that
the plugin uses, is to pass only received messages to the E machine-like task and
forward them to the appropriate tasks.
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| Producer | I\| FT- | Producer |1\ FT- |
Task /| Com Task 1/ Com |,
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s N— o FT
Com——————/ E Com
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Figure 17 FLET is maintained with an E machine-like task

Figure 17 shows that same consumer and producer example as above with an E
machine-like task that retransmits the message that contains the value produced by
the producer task. Note that all tasks including the FT-Com layer are invoked at the
exact same instance of time. Only the messages that link them were changed to
ensure that the FLET property of TDL is maintained.
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Figure 18 Example with 3 E machine-like tasks

Passing received messages through the E machine-like task solves the problem, but
relies on the sending task to be executed before its output message gets transferred
over the bus, which might in spite of sufficient CPU time still be impossible due to the
global message schedule. An efficient and simple solution for maintaining FLET that
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even works if there is not much free CPU time, a lot of messages on the bus and a lot
of different FLET periods, which all require separate E machine-like tasks, is not
possible with the TTPbuild tool. Consider the example in Figure 18 with three
different FLET periods FLET 1 with 2000, FLET 2 with 1000 and FLET 3 with 500
microseconds. For every different FLET period a separate E machine-like task is
required, which are labeled E1, E2 and E3 in the figure. As the minimum time a task
consumes in TTPbuild is 75 micro seconds, this means that we loose already 525
micro seconds (7 times 75) of the 2000 micro seconds period for the execution of the
E machine-like tasks. The fact that in the first 500 micro seconds three E machine-
like tasks have to be executed makes the situation even worse. When considering
that a typical run of the FT-Com layer, which is needed to transfer messages via the
TTP bus, also takes at least about 100 micro seconds, it is clear that this rather
simple example is already tough to implement, as it only allows less than 200 micro
seconds for the execution of an application task for the 500 micro seconds FLET. This
value is anyway only reached in the best case, assuming that the global message
schedule is designed in a way such that the value the task produces can be
transmitted exactly before the end of its FLET.

A solution that can handle scenarios such as the one described above would require
modifying TTPbuild and the operating system TTPos so that every message is
handled correctly according to the FLET property and it is not necessary to have one
E machine-like task for every FLET period.

Modules

As already mentioned in 3.4, TDL modules can be mapped to subsystems in the
context of the TTP tools. Both concepts have in common that they are the unit of
distribution and are used to form a functional unit with well-defined input and output.
In 3.4 arguments were presented in favor of using TDL modules also as unit of
replication in the same way as subsystems are used in the TTP tools.

A notable difference between TDL modules and TTP subsystems concerns the
possibility of the occurrence of cycles due to dependencies between modules or
subsystems. In TDL cycles can occur when a module imports ports from another
module that in turn import ports from the first one. TTP subsystems are linked solely
via messages and so problems with cycles are ruled out because messages have an
initialization value. So even if a message is not already produced by a subsystem it
does have a well-defined value.

The tasks inside a TDL module are linked to the corresponding subsystem in
TTPbuild. It is not possible in the tool to have tasks that are not associated to a
subsystem. Every task must be linked to exactly one subsystem. This corresponds to
the semantics in TDL, as a TDL task also is contained in exactly one module.

For public task output ports of TDL modules a message on the TTP bus must be
created. This is required as such a port must be accessible from all nodes of the
system, as modules that import the public port might be located on a remote node.
The TDL TTP plugin does not check if the port is actually used on any another node,
but simply creates a TTP message for every public output port. It is implemented this
way to keep it as simple as possible, but it might result in wasted bus bandwidth. On
the other hand, it is in some cases beneficial to reserve the bus bandwidth for later
extensions or modifications. This way it is for example possible to shift around
modules between nodes without worrying if the change prohibits the communication
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scheduler from finding a suitable schedule when additional messages have to be
transferred via the bus.

Tasks

TDL tasks are basically mapped one-to-one to tasks in TTPbuild, as there is a similar
task object there. However it is important to take care that the FLET semantics of
TDL are preserved. How this is done is described above in the discussion of the E
machine implementation. The ports of TDL tasks are realized by messages in the TTP
tools. There are two main types of messages in the TTP tools, which are cluster
messages, which are transferred over the TTP bus, and local messages, that are used
to transfer values between tasks of the same node. It is transparent to the task
which message is actually used. To ensure that the FLET property is not violated, it is
not allowed for tasks to be linked directly to other tasks by a local or cluster
message. Therefore all ports of a TDL task result in messages from and to the
corresponding E machine-like task, where sensors are read, actuators are updated
and messages are forwarded to other tasks. Initialization values for ports can be
used as message initialization values. However it is not possible to use initialization
functions, as message initialization values cannot be set at runtime.

The WCET of a task can be mapped to the time budget of a task in the TTP tools. The
time budget is the WCET plus some overhead and may also include some room for
later extensions of a task.

Modes

Currently the TTP tools are restricted to only one application mode on cluster and
node level. Only some special modes like a predefined startup mode for initialization
purposes are supported. This restriction also requires that the TDL modules only use
one mode, as it is not possible to implement more than this when using the TTP
tools. The single TDL mode is mapped to a cluster mode in TTPplan and an
application mode in TTPbuild.

A mode also contains information on the invocation period for tasks and update
frequencies for actuators. The period of a TDL task can be mapped one-to-one to the
period of a task in the TTP tools. However for every different task period also a
separate E machine-like task on the node with the same period of the task is
required to handle its ports. The same applies to actuator updates, which also require
an E machine-like task for execution.

Sensors

The reading of sensors must be performed inside the E machine-like task of the task
that uses the sensor to maintain the FLET property. The value read is then either
used directly by an actuator or delivered to the task that uses it using a local
message. Public sensors are not supported, because their handling is rather difficult
as the update frequency is determined by all consumers of the sensor value,
requiring an analysis of the whole application to find out a suitable communication
pattern.
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Actuators

Like sensors, actuators are required to be updated in the E machine-like tasks that
were created for the FLET period that corresponds to the update frequency of the
actuator. Actuators may be updated by task output ports within the same module or
by imported public ports of other modules that can be located on a remote node.
Consequently, this results in local or bus messages that are received by the E
machine-like task that performs the actuator update.

3.5.1 Mapping TDL to TTPplan Objects

Before going into detail by listing every relevant object and link and how the plugin
has to generate it, we give a brief overview of what has to be done. Figure 14 on
page 29 illustrates the object model that TTPplan uses with all objects and their
relations. The most relevant objects are hosts, subsystems and messages. A host is a
node of the distributed system in the context of the TTP tools. A subsystem should
comprise a well-defined functional abstraction and is the unit of distribution,
composability and replication. This definition suggests that TDL modules and TTPplan
subsystems can be mapped one-to-one, which is exactly what the plugin does. Every
subsystem then needs to be assigned to a host according to the property file. Cluster
messages are created for every public output port of a task and are linked to the
corresponding subsystem. The period of those messages can be determined by the
period of the tasks specified in the TDL code that produce them. In TTPplan it only
has to be defined which subsystems send which messages. Reception does not have
to be specified because the broadcast nature of the bus allows every subsystem on
every node to receive any message. The message type and length is derived from a
standard TDL type mapping table that maps TDL types to types in C as described in
3.5.4 below.

In the following all objects and links of the TTPplan object model are listed together
with relevant attributes. For every entity it is described how the TDL plugin generates
values for it, based on the TDL modules and the property file that contains additional
specification, especially regarding distribution and fault tolerance aspects. In
addition, the script command that is used to generate the object is shown. Attribute
values which act as place holders for real values are enclosed in square brackets.

Object: Message

Description:

Represents a message that is sent on the bus. It is important to note that only the
sending of messages is relevant in TTPplan, because due to the broadcast nature of
the TTP bus every message can be received by every host and therefore the MEDLs
created by TTPplan do not need to contain this information.

Generation:

The generation is done by iteration over all modules and all tasks invoked within the
modules. If the task is tagged with the public keyword, for all output ports of the
task a message is created. Public sensors are not supported by the plugin as their
handling is rather complicated. The problem here is that all tasks or actuators that
use the sensor would have to be analyzed in order to determine the update
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frequency of the sensors and consequently the period of the message that transports
the sensor value.

Important attributes:
e init_value:
This value determines the initialization value for the message. As TDL allows
the specification of initialization values for output ports this value can be used

directly, with the limitation that currently only integer values are handled
correctly.

e agreement:

Specifies the replica-deterministic agreement algorithm. This needs only to be
set for messages of replicated subsystems or TDL modules respectively. As TDL
does not provide such a specification, the value has to be read from the
property file for replicated modules and left blank if replication is not used.

Script command:

TTA_Message.-define ("[messageName]", agreement = "[agreement]”,
init_value = "[initvalue]”, raw=1)

Object: Msg_Type

Description:

This object represents the type of a message. There are pre-defined types and it is
also possible to create custom types.

Generation:

The type handling mechanism of the TDL plugin are described in the separate section
3.5.4 below.

Script command:

TTA.Msg_Type P.define ("[typeName]", length = "[typelLength]”,
type_cat = "[typeCategory]”, typedef = "[cTypeDef]",
type_length = "[cTypeLength]®, raw=1)

Link: Msg_Type uses Message
Description:
This link associates a message with a message type.

Generation:
Every message has to be linked to the message type that was created for it before.

Script Command:

TTA_Message_uses _Msg Type.add (TTA.Message.instance ("[messageName]®"),
TTA_Msg_Type P.instance ("[messageType]®)

Object: Cluster

Description:

Represents the whole TTP cluster which is a collection of hosts. It contains a number
of global attributes.
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Generation:

The name for the cluster can be obtained by reading the property file. For most
attributes of the cluster object the default values can be used.

Important attributes:

tr_period:

This attribute determines the length of a TDMA round of the TTP communication
bus of the cluster. This value must not be longer than the shortest period of a
message, because otherwise it would not be possible to transfer it in the
required time. The shortest message period is figured out by the plugin by
analyzing the list of all messages that need to be transferred. tr_period is set
to the shortest message period divided by 2. The reason for this is that a
cluster cycle anyway has to consist of at least of two TDMA rounds and the
period length of a TTPbuild application cycle equals the cluster cycle length.
Therefore it makes more sense to double the number of TDMA rounds to run
the task that produces the message with the shortest period once per cluster
cycle. This way also the schedule TTPbuild generates is more readable when
viewing it with the tool, as otherwise the application cycle has the double length
of the shortest message period and every task invocation would be contained
twice in the schedule, as the application cycle length is always based on the
cluster cycle length.

transmission_speed:

This value specifies how fast data is transferred on the TTP bus. The value can
be 5000 kilobits per second at the maximum, resulting in a bandwidth of 10000
kilobits per second when using both channels independently. Of course this
setting is a trade-off between being able to transmit more data versus a less-
fault tolerant transmission with probably more transmission errors. The value is
read from the property file. The recommended value is the maximum of 5000
bits per second, as it gives the scheduler more room and therefore increases
the probability to find a valid schedule for a given TDL program. It would also
be possible to let this value be determined automatically with good knowledge
of how the schedule is generated by TTPplan and information of how much
bandwidth is actually available to the application, which is the net bandwidth
after the subtraction of protocol overhead. The size of the messages, which is
needed for such a calculation as well, is available to the plugin through the type
mapping mechanisms, as described in section 3.5.4 below.

controller_type, physical _interface:

These are hardware-specific parameters that need to be customized to match
the target hardware. The plugin currently leaves them at their default values
TTTech_C2 and MFM.

fixed_round_number, max_tdma_rounds, min_tdma_rounds:

With these values the cluster scheduler can be influenced concerning the
number of TDMA rounds a cluster cycle consists of. The current version of the
plugin does not use them and leaves them at their default values.
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Script command:

TTA.Cluster.define ("[clusterName]", byte order = "big 32 endian®,
tr_period = "[lengthOFfTDMARound]", transmission_speed =
"[transmissionSpeed]”, raw=1)

Object: Host

Description:

This object represents a host of the cluster. A host in context of the TTTech TTP tools
is a node of the distributed system.

Generation:

The specification of hosts has to be obtained from the property file. It contains a list
of hosts for every module that specifies on which hosts they should be assigned. Out
of this list a list of all hosts can be obtained and then for every host an object can be
generated named with the name of the host.

Important attributes:
e serial_number:

The serial number is a number used to clearly identify a host. It must be unique
and can be automatically generated by numbering every host starting at 1.

e mux_period, mux_round:

These two attributes are needed when using multiplexing of TDMA slots. The
period and round of the host can be set to share a slot with a different host.
The plugin does not use multiplexing and so it sets both values to 1, resulting in
having exactly one slot per host.

e controller_type:

This is the same hardware-specific attribute as described above for the cluster
object and is set to TTTech_C2, which specifies the hardware configuration that

matches the available development cluster.

Script command:

TTA.Host.define ("[hostName]", mux round = "1%, mux_period = "1°7,
serial_number = "[serialNumber]®, controller_type =
"TTTech_C2*, raw=1l)

Link: Host in Cluster

Description:

This attribute specifies the hosts a cluster consists of. Every host needs to be linked
to a cluster.

Generation:

As we have only a single cluster all the plugin has to do is to link every generated
host object with the cluster.

Script command:

TTA.Host _in_Cluster.add (TTA.Host.instance ("[hostName]"),
TTA.Cluster.instance ("[clusterName]"))
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Object: Slot

Description:

A slot represents a single slot of the TDMA round of cluster communication. Every
slot must be assigned to a host.

Generation:

Every host needs to have a slot in the TDMA round and so for every host a slot object
needs to be generated. Its name consists of the name of the node and the ending
_slot.

Important attributes:
e sort_key:

This attribute can be used to influence the arrangement of slots. By default the
scheduler of TTPplan determines the order of the TDMA slots. When this value
is set, the order of slots will follow the order of the values of this attribute. The
plugin does not use this option and lets the scheduler determine the order
automatically.

Script command:
TTA.Slot.define ("[slotName]")

Link: Host uses Slot

Description:

This link assigns every host a sending slot in the TDMA round of the cluster. When
multiplexing is not used, then every host has to be linked to exactly one slot.

Generation:

Because the plugin does not use multiplexing, it simply links every host to the slot it
created for it.

Script command:

TTA.Host _uses_Slot.add (TTA.Host.instance ("[hostName]"),
TTA.Slot.instance ("[slotName]"))

Object: Cluster_Mode

Description:

Represents a cluster mode. The version of TTPplan that was used for the thesis has a
limitation of only being able to handle a single cluster mode. This limitation does not
include the following three pre-defined modes that TTPplan supports by default:
Startup_Mode, Sleep_Mode and Download_Mode. The Startup_Mode is a special
mode in which every cluster starts to do some initialization routines for every host
and in which the start-up of the communication system is performed.

Generation:

In addition to the startup mode, an application mode needs to be created that is the
mode the system runs in when operating normally. The name of the mode is
generated by taking the name of the TDL mode inside a TDL module and adding the
ending _clustermode. It does not matter from what module the name is taken as the
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plugin anyway only allows the usage of a single mode throughout the whole set of
TDL modules.

Important attributes:
e i_frame_factor:
This is a mandatory attribute that sets the minimum number of so-called |
frames per TDMA round. Initialization frames contain no application data and
therefore are protocol overhead. They most yimportantly contain the global

time and membership information and are required for the integration of hosts
into the cluster. The plugin uses a standard value of 2 here.

Script command:
TTA.Cluster_Mode.define ("[clusterName]", i_frame factor = 2)

Link: Cluster_Mode after Cluster_Mode

Description:

This link lets the user specify which modes follow each other by specifying a
successor and a predecessor mode. Typically there exists a link to define which mode
should follow the Startup_Mode.

Generation:

Since there is only a single application mode, there simply needs to be created a link
to let the application mode be the next mode after the Startup_Mode.

Important attributes:
e request_mode_change:

This mandatory attribute determines in which TDMA round a mode change can
be requested by a host. The plugin uses a value of 1 here, so a mode change
can be requested in the first TDMA round of the cluster cycle.

Script commands:

TTA.Cluster_Mode_ after_Cluster_Mode.add
(TTA_Cluster_Mode. instance ("Startup_ Mode®),
TTA_Cluster_Mode.instance ("[clusterMode]"))

TTA.Cluster_Mode_after_Cluster_Mode.link ("Startup_Mode*®,
"[clusterMode] ") .set (request _mode change = "1, raw=1)

Link: Cluster_Mode of Cluster

Description:

This link assigns a cluster mode to the cluster. Every mode that is used by the
application has to be linked to the cluster.

Generation:

The created application mode and the Startup_Mode are the only cluster modes we
need, and so it is sufficient to create two links to the cluster for them.

Script command:

TTA.Cluster_Mode_of Cluster.add (TTA.Cluster_Mode. instance
("[clusterMode] "), TTA.Cluster.instance ("[clusterName]"))
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Link: Cluster_Mode uses Message

Description:

This link specifies all messages that are used in a cluster mode.

Generation:

Since we have only one cluster mode besides the dedicated Startup_Mode, the plugin
has to link all messages with it.

Important attributes:

d_period:

This attribute stands for "design period” and specifies the period of the
transmission of a message on the TTP bus. The plugin needs to set this value to
the period of the TDL task that belongs to the output port for which the
message was created.

max_round, min_round:

These two attributes can be used to influence the scheduling of messages. A
maximum and minimum TDMA round number of the cluster cycle can be
specified, resulting in the message being scheduled between those two values.
It might be necessary for more complicated applications to modify those values.
Basically it is not desirable to transfer messages to early in the cluster cycle, as
the mechanism to maintain FLET described above relies on the task that
produces the message to run before it is transferred. On the other hand,
transferring messages too late in the cycle is also not good, as then there might
be not enough room for the FT-Com layer to run which has to provide the
correct values to the E machine-like task before the beginning of the next FLET
period. The plugin does not use the values, which works for simple schedules.

redundancy_degree

This attribute specifies whether to transfer the message via one or two
channels of the TTP bus. The only values allowed are therefore 1 and 2. It is
read from the property file so that the user can decide what level of redundancy
should be applied. The property and its handling is described in detail in 3.4
and 3.6 respectively.

Script commands:

TTA.Cluster_Mode_uses_Message.-add (TTA.Cluster_Mode. instance
("[clusterMode] "), TTA_Message.instance ("[messageName]"))

TTA.Cluster_Mode_uses Message.link ("[clusterMode]",
"[messageName] ") .set (d_period = [messagePeriod],
redundancy_degree = [redundancyDegree])

Link: Host in Cluster_Mode

Description:

This link connects a host to a cluster mode.

Generation:

Due to the limitation of TTP build there is only one cluster mode. All the plugin has to
do is to link every host to this cluster mode and the Startup_mode.
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Important attribute:
e may_request_mode_change

This attribute specifies to which mode a host is allowed to change to when it is
in the cluster mode linked to it. For the link to the Startup_Mode the only

regular cluster mode must be specified here.

Script commands:

TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ("[hostName]"),
TTA.Cluster_Mode. instance ("[clusterMode]"))

TTA.Host _in_Cluster_Mode.link ("[hostName]", "[clusterMode]).set
(may_request_mode_changes = "[modeAllowedToChangeTo]", raw=1)

Object: Subsystem

Description:

This object represents a subsystem, which is the unit of distribution, replication and
composability in the TTP tool chain.

Generation:

We already argued above in 3.4 and 3.5 that a subsystem can be mapped one-to-
one to a TDL module. In TTPplan the plugin needs to create a subsystem for each
module that sends a message on the bus, i.e. for every module that contains tasks
with public output ports.

Important attributes:
e reintegration_type:

Specifies if and how a repaired host hosting that subsystem should be
reintegrated. This attribute is read from the property file for each module.
Details can be found in section 3.6.

Script command:

TTA.Subsystem.define ("[subsystemName]", reintegration_type =
"[reintegrationType]”, raw=1)

Link: Subsystem sends Message

Description:
Specifies the messages that are sent by a subsystem.

Generation:

As TDL modules are mapped to TTP subsystems, all messages created for the public
task ports of TDL modules need to be linked to the corresponding subsystem.

Script command:

TTA.Subsystem_sends_Message.-add (TTA.Subsystem.instance
(" [subsystemName] "), TTA.Message.instance ("[messageName]"))

Link: Host runs Subsystem in Cluster_Mode

Description:
This link defines the assignment of subsystems to hosts and cluster modes.
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Generation:

The assignment of modules to hosts can be obtained from the property file as can be
seen in 3.6 below. As TDL modules are mapped one-to-one to subsystems the plugin
has to generate one link for every subsystem and link it to the corresponding host
from the property file and to the only cluster mode.

Script command:

TTA_Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance
("[hostName] "), TTA.Subsystem.instance ("[subsystemName]"),
TTA.Cluster_Mode. instance ("[clusterMode]"))

3.5.2 Mapping TDL to TTPbuild Objects

After the generation of the bus schedule by TTPplan, system configuration is
continued on node-level with TTPbuild. Figure 15 on page 31 illustrates the object
model used by TTPbuild. On node-level tasks, messages and subsystems are the key
objects. Every task in TDL can be mapped to a TTPbuild task. A task has to be linked
to exactly one subsystem. A subsystem can be mapped one-to-one to a TDL module
as explained above and therefore every task in a module has to be linked to the
according subsystem. In the TTPbuild object model, a task can only interact with
other tasks by sending and receiving messages in TTPbuild, which is very similar to
TDL where task communicate via input and output ports. An important aspect of the
creation of the TTPbuild object models for the hosts is the maintaining of the FLET
property and other TDL semantics like the execution of drivers for reading sensors
and updating actuators at the begin and end of FLET as described at the beginning of
this chapter.

On the following pages all relevant objects and links of the TTPbuild object model are
explained together with the information of how the plugin generates them out of TDL
modules and the property file.

Object: App__Mode

Description:
This object represents an application mode.

Generation:

An application mode in TTPbuild can be identified with a TDL application mode. Thus,
TDL modes can be mapped onto the App_Mode object one-to-one. The current
version of TTPbuild only supports a single application mode and therefore all TDL
modules must follow this restriction as well, i.e. only TDL modules having one mode
are supported. Consequently, only one mode exists and the name of the mode can
be used for the App_Mode object.

Important attributes:

For the required attributes maximum_interrupt_latency, neg_correction_limit,
pos_correction_limit, neg _synch_limit and pos synch limit default values
suggested by TTPbuild are used.



48

Script command:

TTA_.Node.App_Mode.define ("[applicationMode]",
maximum_interrupt_latency = "150 us®", pos_synch_limit = "max (
TTA.Cluster.clock_sync.macro_tick length /7 1000 * 2,
TTA.Cluster_tc_period * 0.0015)", neg_synch_limit = "max (
TTA.Cluster.clock_sync.macro_tick length /7 1000 * 2,
TTA_Cluster._tc_period * 0.0015)", neg_correction_limit = "max (
TTA.Cluster.clock_sync.macro_tick length /7 1000 * 3,
TTA.Cluster.tc_period * 0.002)", pos _correction_limit = "max (
TTA.Cluster.clock_sync.macro_tick length /7 1000 * 3,
TTA.Cluster.tc_period * 0.002)", raw=1l)

Link: App_Mode maps_to Cluster_Mode

Description:
This link associates an application mode of a node to a mode on cluster level.

Generation:

Since there is only a single application mode and a single cluster mode those two
have to be linked.

Script command:

TTA_Node.App_Mode_maps_to_Cluster_Mode.add (TTA.Node.App_Mode. instance
("[applicationMode] "), TTA.Cluster_Mode.instance ("[clusterMode]"),)

Object: Host

Description:
Represents a host or node of the cluster.

Generation:
The host object was already generated by TTPplan.

Important attributes:
e node_config:

Specifies the type of hardware used. It is set to "TTPpowernode_C2", which is
used in the TTTech TTP development cluster.

Script command:

TTA_Host.customize ("[hostName]", node_config = "TTPpowernode C2*,
raw=1)

Object: Task

Description:

This represents a task executed by the TTPos operating system. There are user-
defined tasks that implement the actual application and also system tasks that are
automatically generated in order to handle the transmission and reception of
messages and to perform time synchronization with the other nodes of the cluster.
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Generation:

Basically every TDL task is mapped onto a corresponding TTPbuild task with its name
and period. But also additional tasks have to be created for maintaining the FLET
property and the execution of TDL drivers, which are functions that are performed by
the E machine-like task as described at the beginning of this chapter.

Important attributes:

time_budget:

TTPbuild uses the concept of a time budget. It is calculated by taking the worst
case execution time (WCET) of a task and adding some overhead needed by the
operating system to actually switch between task (context switching time). The
plugin neglects this time and sets the time budget to the TDL WCET value. For
the E machine-like tasks the minimum value for the time budget of 75 micro
seconds-like is used because the execution of drivers in the E machine-like task
should not take more time as they are logically executed in zero time. Also the
retransmission of messages that are received on behalf of a task does only take
very little CPU time.

period:

This attribute is used to specify the period of the task in micro seconds. It is set
to the period of the TDL task. For the E machine-like tasks also the period of
the corresponding TDL task is used.

deadl ine:

Used to set a deadline for the task to influence the scheduling of TTPbuild to
schedule the task in a way that it will finish before the deadline. This value is
relative to the task period and in microseconds. For normal tasks this value is
left blank because TTPbuild will schedule them with respect to the time when
the messages a task consumes are received and the time messages a task
produces have to be available for other tasks. For the periodic E machine-like
task this value is set to ensure that it is scheduled at the beginning of every
period.

phase:

The phase is the time interval between the beginning of the cycle and the
execution of the task. Again this is not set for normal tasks but set for E
machine-like tasks to ensure that they are scheduled correctly at the beginning
of the FLET.

time_source:

This attribute defines the time source for the task. There are two options here:
local_time, which refers to the local clock of the host, and reference_time,
which refers to the global clock obtained by the synchronization mechanisms of
the TTP protocol. In most applications this choice is not that important, because
the local clock is synchronized to the reference time anyway. The default is
local_time, which has the advantage that it is available regardless of a
working connection to the bus.
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Script command:

TTA_.Node.App_Task.define ("[taskName]", time_source =
"local_time", time_budget = "[timeBudget]", period =
"[period]", deadline = "[deadline]”, phase = "[phase]”, raw=1)

Link: Task in App_Mode

Description:
This links a task to an application mode.

Generation:

Since there is only one application mode, every task is linked to it. Also every E
machine-like task has to be linked to it.

Script command:

TTA_Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance
(" [taskName] "), TTA_Node.App_Mode.instance ("[applicationMode]")

Object: Subsystem

Description:

The subsystem object is the same as in TTPplan. Subsystems that were already
created in TTPplan are available in TTPbuild as well and cannot be edited or deleted.
In addition there is also the possibility to create node-local subsystems.

Generation:

For normal TDL application tasks the subsystems that were already created with
TTPplan are used. For the E machine-like tasks a separate subsystem named
"emachine" is created. It would also be possible to assign the E machine-like tasks to
one of the already created subsystems, but as those tasks serve multiple modules
and consequently subsystems created for them, it would be misleading to do so.

Script command:
TTA.Subsystem.define ("emachine®)

Link: Subsystem runs Task

Description:

Specifies which task is run by which subsystem. Every task is required to be run by
exactly one subsystem that was specified to send the message produced by the task
in TTPplan.

Generation:

Since TDL modules are mapped one-to-one to subsystems, every task is linked to the
according subsystem that was created for the module in TTPplan. All E machine-like
tasks are linked to the "emachine" subsystem.

Script command:

TTA_Node.Subsystem runs_Task.add (TTA.Subsystem.instance
(" [subsystemName] "), TTA.Node.App_Task.instance ("[taskName]"))
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Link: Host runs Subsystem in Cluster_Mode

Description:
This link specifies which subsystem is executed on which host in which cluster mode.

Generation:

This link is already present in the host object model, as it was created by TTPplan
before.

Object: Message

Description:

This object represents a message on node level. It can either be a global message
that is transferred over the TTP bus and was already defined with TTPplan, or a local
message that is used to transfer values between tasks running on the same host.

Generation:

Global messages were already defined with TTPplan and cannot be altered in
TTPbuild. Local messages are generated for transferring values from the E machine-
like tasks to application tasks in order to transfer sensor readings and messages
received from the bus. For actuator updates local messages from the tasks to the E
machine-like tasks are created.

Important attributes:
e d period:

Specifies the design period for local messages. The message is transferred once
per period. It is set to the period of the E machine-like task and the sending or
receiving task

e init value:

This attribute sets an initialization value for the message. TDL supports the
specification of initialization values for task output ports and actuators. The
plugin supports the usage of constants as initialization values in TDL modules
and applies them to the init_value attribute.

Script command:

TTA.Message.define ("[messageName]", d_period = [period],
init value = [initvalue])

Link: Message uses Msg_type

Description:

This link assigns a message type to a message. The message types were already
created in TTPplan.

Generation:

The type of a message is derived from the type of the task port the message is
created for.
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Script command:

TTA_Message_uses Msg Type.add (TTA.Message.instance ("[messageName]"),
TTA.Msg _Type P.instance ("[messageType]”))

Link: Task uses Message

Description:

This link specifies which messages a task uses. Every message that was specified to
be sent by the host in TTPplan before must be linked to a task and selected to be
sent by it.

Generation:

For every TDL task it is necessary to analyze the input and output ports and link
messages according to them. For sensor input ports the local messages from the E
machine-like task where the sensor code is executed to the task that uses the sensor
must be linked. Messages from other tasks also have to be passed via the E
machine-like tasks to ensure the FLET property of TDL. For output ports it depends
on whether a task is tagged with the public keyword or not. The output ports of
public tasks are transferred over the bus and therefore have to be linked to the
cluster messages which where already generated with TTPplan. For non-public tasks
local messages that contain their output port values have to be created and linked
with the tasks.

Important attributes:
e received:

This attribute selects whether or not the linked message is received by the task.
Valid values are yes and no. Every message on the bus can be received by
every task without changing the bus schedule, as every message is broadcasted
and can be received by every host. If a task has to receive messages from the
bus, creation of an additional task that implements the fault tolerance
communication (FT-Com) is initiated. This task will be scheduled before the
consuming task to prepare the value for it. Therefore every such message sent
over the bus also consumes CPU time on the sending and the receiving host
and complicates the task schedule.
Basically every input port of a task results in a received message. For messages
from the bus this means that the E machine-like task has to receive the
message and pass it on to the task by means of a local message. In addition,
TDL provides for every task that the output port value of the last round is
available to it in the current round as well, regardless if the task actually uses it
or not. For public tasks this means to receive the output port message from the
bus with an FT-Com layer task and for local tasks it means to create a message
that is passed through the E machine-like task.

e sent:

This attribute selects if a message is sent by a task. This also triggers the
creation of FT-Com layer tasks when the messages are broadcasted on the TTP
bus. Basically for every task output port one message has to be sent that either
is a cluster message or a node-local one to other tasks or to the E machine-like
task for actuator updates. The E machine-like tasks itself send messages
containing sensor readings and received messages from the bus that are
forwarded via local messages to the appropriate tasks.
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e access_type:

The access type can be raw, agreed or both agreed and raw. The plugin sets
this to the default value of agreed, which is suitable for most applications.

Script commands:

TTA_Node.Task uses Message.add (TTA.Node.App_Task.instance
("[taskName] "), TTA.Message.instance ("[messageName]"),
access_type = "agreed”, raw=1)

TTA.Node.Task uses Message.link ("[taskName]", "[messageName]").set
(sends = "[isSent]", receives = "[isReceived]”, raw=1l)

3.5.3 Glue Code Generation

The so-called glue code for the integration of TDL and the TTTech TTP tools consists
of two parts. One part of it is wrapper code that integrates the C functionality code
that is provided for all sensors, actuators and tasks of every TDL module with the TTP
tools. The specification of TDL includes language binding rules that outline how the
functionality code for the C language should look like. The advantage of such a
standard is that the code is reusable even in the case of different target platforms.
The goal for the design and implementation of the glue code was to follow those
standards as closely as possible and to achieve a certain degree of platform
independence for the functionality code. The other part of the glue code is code that
implements the E machine-like tasks that have two purposes: The execution of
drivers, which is sensor and actuator code, and the handling of retransmission of
messages in order to maintain the FLET property of TDL. Those two parts will be
explained below in detail together with strategies of automatic code generation for
them.

Note that for the implementation of the plugin only a basic set of language binding
rules were used due to the fact that the rules for the C language were still in
developmental state. The rules are most probably not identical in a later version as
rules for the type mapping and the naming of functions to support qualified names
might be created or changed.

TDL Compiler Language Bindings

We reconsider the simple TDL module lightController._tdl as introduced in 2.3.2:

module lightController {

sensor
int brightness uses getBrightness;

actuator
int light uses setLight;
public task calc [100us] {

input
int brightnessvalue;
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output
int lightvalue = 0;

uses calclmpl(brightnessvalue, lightValue);

}

start mode controlLight [4000us] {

task
[1] calc(brightness);

actuator
[1] light:=calc.lightValue;

}

In this module there are three calls to external functionality code, indicated by the
keyword uses. The following functionality code header file lightController.h must

be provided:

int getBrightness();
void setLight(int lightValue);
void calclmpl(int brightness, int *lightValue);

Note that sensor getter functions are parameter-less functions with a single return
value and actuator setter functions have no return value and a single parameter.
Functions that implement tasks have no return value and their parameters are
passed according to the order in the TDL code, where input ports are passed by value
and output and state ports are passed by reference. The reference to the output port
variable initially contains the value from the last execution of the task. In addition to
the header file, a file lightController.c must exist that contains the actua
implementation of the functions.

TTP tools task implementation

In TTTech's TTP toolchain as a last step the code for the task implementation must
be provided. The tasks are specified with their period and the messages they send
and receive. It does not matter whether the message is transmitted over the TTP bus
or whether it is a local message as both are handled in the same way by TTPos and
the FT-Com layer respectively.

Let's assume a task increment that consumes the message inputValue and sends
the message outputValue. An implementation of this task would look like the
following:

tt_task (increment)
{

tt_Raw_Value (outputValue) = inputValue + 1;
}

tt_task and tt_Raw_Value are both macros that are either defined in a TTPos library
file or a file that is created by TTPbuild containing the FT-Com layer code. The
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programmer can assume that at the beginning of the execution of the code all
messages a task receives are available as variables with the current value of the
message. The name of the variable equals to the name of the message that was
given in TTPplan and TTPbuild respectively. The tools handle the generation and
execution of the FT-Com layer code that receives messages from the bus as needed.
Arbitrary C code can be used in the task implementation. In contrast to TDL
semantics, also sensor getter and actuator setter functions are typically included in
the task code. The output messages can be passed by calling the macro
tt Raw Value (message) for every message. TTPos and the FT-Com layer then
handle the transmission of messages either locally or via the TTP bus.

Let us take a look at the resulting glue code from the example TDL module
lightController.tdl above. Before the glue code can be generated, a task in
TTPbuild must be specified that has the appropriate period of 4000 micro seconds
and a time budget of 100 micro seconds. Furthermore the two messages
brightnessValue for the input and lightValue for the output ports must be
created. Because TDL requires that the output port of a task contains the output
value produced in the last round, we need an additional message from the E
machine-like task that we name lightValue_in. So the glue code that maps the TDL
functionality code to the TTP task code looks like this:

#include lightController.h

tt_task (calc)
{
calclmpl (brightnessvValue, &lightValue_in);
tt_Raw_Value (lightValue) = lightValue_in;
}

Note that brightnessValue is passed by value and lightValue_in is passed by
reference. The function calclmpl modifies the value lightValue_in, which is then
passed on to the macro tt Raw Value in order to set the value of the message
lightValue.

E Machine-like task Generation

The E machine part of the glue code consists of the execution of sensor readings and
actuator updates and the retransmission of messages. A retransmission is necessary
when a task receives a message from the TTP bus. As described in 3.5 in order to
ensure that the FLET property of TDL is not violated, the E machine-like task receives
the message and then passes it on to the task with the help of a local message. To
perform a retransmission, an E machine-like task must be created with TTPbuild with
the corresponding received and sent messages. The actual retransmission is done
with one line in the task code that copies the value of the received message to the
sent one:

tt Raw_Value (sentMessage) = receivedMessage;

The execution of drivers for sensor readings and actuator updates is also done by
making the E machine-like task send and receive the appropriate messages. For
sensor readings only local messages have to be created as public sensors are not
supported. Actuator updates might also require the creation of messages on the bus,
depending on if the task that sets the value for it is located on a remote node or not.
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The following part of the glue code implements the E machine-like task for the
example module lightController.tdl above.

#include lightController.h

tt_task (emachine)

{
setLight(lightvalue);

tt_Raw_Value (brightnessValue) = getBrightness();
}

A special case occurs when a sensor is connected directly to an actuator. An example
for such a situation is the following modified version of the example above:

module lightController {

sensor
int brightness uses getBrightness;

actuator
int light uses setLight;

start mode controlLight [4000us] {

actuator
[1] light := brightness;

}

In this case the value of the sensor is read and within the same instance of the E
machine-like task the actuator must be updated with the value. This results in a
different handling of the sensor inside the E machine-like task, whereas the code
generated for the actuator remains the same:

#include lightController.h

tt_task (emachine)

{
int brightness = getBrightness();
setLight(brightness);

}

For the sensor a local variable with the name of the sensor is generated. Compared
to the solution of directly calling setLight(getBrightness()) this has the
advantage of unchanged code generation for the actuators and it also prohibits that
the sensor is called more than once when it is used by multiple actuators or if it is
broadcasted in a message on the TTP bus.

Message Status Sensor

As described in 3.4 above, the plugin supports a special sensor that gives TDL access
to the message status value that is provided by the FT-Com layer. The message
status of an example message lightValue can be obtained by calling the macro
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tt Message Status (lightvValue)

So for a special sensor declaration like

sensor
int lightvalue messageStatus uses REPL_lightValue;

we need to replace the call of the function REPL_lightvalue(), that normally would
be used in the glue code of the E machine-like task, with the call to obtain the
message status tt_Message_ Status (lightvalue).

3.5.4 Type Mapping

For a successful generation of code for the TTP platform out of TDL modules and
functionality code, the types that TDL uses must be mapped to the types of the TTP
tools. The TTP tool chain itself contains two different type systems. As applications
for the TTP platform are developed in C it is necessary to use the types of this
language. But there is a different notion of types for the TTP communication bus
which uses its own type classification. These types must be mapped to each other as
well, which is done by the TTP tools by means of the Msg_Type object, which contains
a number of attributes for type specification. We need to have a way to specify the
mapping of a TDL type to those two different type systems.

The goal for the type handling of the plugin was to provide a standard type mapping
that is suitable for most applications, but also to give the user the ability to
customize it in case he or she has specific requirements. The solution was to use an
external file that specifies the mapping and to provide a standard version of the file
that contains a default mapping. This gives the user the ability to conveniently
modify the mapping when needed. As file format the Java property file format was
used, same as for the main property file that the plugin uses (see 3.6). The file
containing the type mapping is called types.properties and must be located in the
resource directory of the plugin that is specified in the TTPPLatform.properties
file. All properties of a type are directly used as attributes for the Msg_Type object in
the TTP tools. For every type the following properties must be specified in the file:

type.Length=

This property specifies the length of the type for TTPplan, i.e. the amount of bits and
bytes that the type uses for message transmission. The syntax is [bytes][:bits], so
for example 2 means 2 bytes, :10 means 10 bits and 1:2 means one byte plus 2 bits.
The reason for this exact specification down to single bits is to enable the user to
avoid any waste of bandwidth. For example a boolean value this way only takes one
bit and for a 12 bit value from an A/D converter only those 12 bits are allocated
within a message to transfer the value on the TTP bus.

type.Category=

This property specifies the category of the type for TTPplan. Valid categories are:

e INT: Used for signed integer values.

e UINT: Used for unsigned integer values.

e REAL: Used for floating point values.
type.CTypelLength
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This property specifies the length of the type for the C programming language, i.e. it
is equal to the value returned by sizeof().

type.CTypeDef

This property lets the user specify the C type definition.

The following is the type mapping that the file types.properties contains by
default:

short.Length=2
short._Category=INT
short.CTypelLength=2
short.CTypeDef=short int

boolean.Length=1
boolean.Category=UINT
boolean.CTypeLength=1
boolean.CTypeDef=unsigned char

byte.Length=1
byte.Category=UINT
byte.CTypeLength=1
byte.CTypeDef=unsigned char

int.Length=4
int_Category=INT
int.CTypelLength=4
int.CTypeDef=long int

long.Length=4
long.Category=INT
long.CTypeLength=4
long.CTypeDef=long int

float.Length=4
Ffloat.Category=REAL
Ffloat.CTypelLength=4
Ffloat.CTypeDef=Float

double.Length=8
double.Category=REAL
double.CTypelLength=8
double.CTypeDef=double

char.Length=1

char .Category=INT

char .CTypelLength=1

char .CTypeDef=unsigned char

3.6 Property File for Specification beyond TDL

This section contains a list of all the various properties that need to be specified in a
separate file in addition to the TDL modules. For every item a description is provided
together with an explanation why it is needed. An example property file for the demo
application that is filled with proper values can be found in section 4.2.2 below.
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The format of the property file is a standard Java property file as used by the class
jJava.util _Properties. It is a text file with name-value pairs separated by a =
symbol. The file is required to be named TTPPlatform.properties and has to be
placed in the directory that is specified as destination directory when calling the TDL
compiler.

Program and File Location Parameters

The plugin needs a number of files and executables for proper operation. The
following properties tell the plugin where to find those resources.

TTPPlanLocation=

The value of this property must contain the path to the executable of the batch
version of TTPplan. Typically the file is located at
C:\TTTech\TTPplan\4.4\TTPplan_batch.exe.

TTPBuildLocation=

This property specifies the location where the plugin can find the batch version of
TTPbuild. By default this file is installed at
C:\TTTech\TTPbuild\4_4\TTPbui ld_batch.exe.

CMDLocation=

The value of this property must contain the path to the executable cmd.exe, which is
the command line interpreter of the Windows operating system. It is needed by the
plugin for the execution of batch files such as the one that handles the compilation of
a node. Typically this file is located at C:\windows\system32\cmd.exe.

ResourceDirectory=

Unlike the last properties this is a path to a directory and not to a file. The following
files come with the plugin in the directory resource and must be placed somewhere

on the local system:

e main.c is a C code file that contains some standard initialization routines for
nodes of the TTP cluster and is originally provided by TTTech as part of the
demo application for the TTP tools.

e make.bat is a batch script that controls the invocation of the Windriver Diab C
compiler that compiles and links the source code for every node.

e prj_setup.bat is a helper file to make.bat.

e types.properties is a Java property file that specifies the type mapping of
TDL types to types in C and the TTP tools and contains default values for all
standard TDL types.

Plugin Control Parameters

LastModule=

This property is needed to tell the plugin the name of the last module that is passed
to the TDL compiler as a command line parameter. All modules of the distributed
application have to be passed at once when calling the compiler at the command line.
The plugin needs to have them all compiled and available before it can start
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processing them and as this data is not available through the plugin interface of the
compiler, the plugin needs to cache all of them until the last module is compiled. To
know what the last module is it compares its name to the value of this property.

FilesToCopyForEachNode=

With this property a number of files can be specified that will be copied from the
destination directory, which was passed to the TDL compiler, to the directory of every
node that contains all files that will later be compiled for it. An example for such files
would be driver code for sensor readings and actuator updates that can be used
identically for each node and so only have to be created and maintained in a single
file. It is optional whether to use this parameter or not as driver code can as well be
included in the functionality code file for every module.

TTP Tools Parameters

ClusterName=

This value defines the name of the cluster that will subsequently be used in the TTP
tools. This also influences the file name of the cluster database created by TTPplan.

TransmissionSpeed=

This entry specifies the transmission speed on the TTP bus in kilobits per second. The
value may be up to 5000. The recommended value is the maximum of 5000 as this
gives the cluster schedule algorithm the highest degree of freedom and makes it
easier to schedule the messages. Consequently it also simplifies the finding of a task
schedule for single nodes and increases the probability that a schedule is found that
conforms to the FLET property of TDL.

Distribution Parameters

TDLModullel.Node=Nodel:Node2
TDLModulle2.Node=Node3

This property consists of the name of a TDL module followed by the ending .Node.
The value indicates on which node the module should be executed. The value can
contain the name of a single node or multiple nodes separated by a colon. Specifying
multiple nodes here results in replicated execution of the module on these nodes. The
assignment of modules to nodes also serves for getting a list of all nodes the cluster
consist of, as this is specified nowhere else. So every usage of a new name of a node
implicitly creates one.

Fault Tolerance Parameters
TDLModulel .RDA=

This property is only needed for modules that are replicated by an assignment to
more than one node. When a module is executed on more than one node, the values
it produces might be different due to a failure in for example either the node's
hardware, operating system or the communication subsystem. Therefore a so-called
replica-deterministic agreement algorithm must be specified, that integrates the
possibly different values of a message to a single one that is consistent throughout
the whole system. The value of this property is directly passed to TTPplan and only
the following strings are valid as they represent different RDA algorithms [6]:
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RD_1 valid, RD_Add, RD_Average, RD_M Vote and RD_Piecewise. The RD_1 valid
algorithm picks any valid value. RD_Add adds the value of all valid values of the
replicated modules. RD_Average calculates the average of all valid values. RD_M_Vote
stands for a majority vote algorithm that picks the value that the majority of the
replicas produce. RD_Piecewise is used for structured data types and enables the
application of different RDA algorithm to every element. As structured data types are
not supported by the plugin tool chain this algorithm cannot be used.

TDLModule.ReintegrationType=

Reintegration occurs after the failure of a node. In case of a transient failure the node
might be fully functioning after a short amount of time and ready for operation again.
A permanent failure might require the repair or replacement of the node. In both
cases the node must be reintegrated into the running cluster. This can be done by
resetting the whole cluster by restarting all nodes. In safety critical application this is
often not an option and it is required that a node performs reintegration while the
cluster is running. Reintegration is specified on TTP subsystem level. With this
property the user can decide whether a module should perform reintegration or not.
This setting is necessary for all modules. There are two valid strings for this setting:
Reinit _Reintegration and No_Reintegration. Reinit Reintegration tells the
plugin to perform reintegration into the running cluster whereas when specifying
No_Reintegration this does not happen and the TDL module only continues working
when the whole cluster is reset.

TDLPublicOutputPort.ChannelRedundancy=

This property must be set for every output port of a public task. These are exactly
the ports for which messages on the TTP bus are generated. The TTP bus has two
channels that can be used redundantly for improved safety and fault tolerance or
independently for maximized data throughput. The value of this property can be
either 1 or 2. 1 causes the message to be transmitted only on one channel of the TTP
bus and 2 triggers the redundant transmission of the message.

3.7 Implementation of the TTP TDL Plugin

This section explains step-by-step what the TDL TTP plugin for creating code for the
TTP platform does. It describes how the generation of the scripts for TTPplan and
TTPbuild is done, how the glue code is generated and how all files are compiled and
linked together to get a working application binary.

Execution Environment

The TDL plugin implementation requires a number of tools for proper operation. This
section lists those tools and also contains information on the exact version that was
used for the development of the plugin. Other versions might work as well, but as
features and functions might change this cannot be guaranteed.

The plugin is implemented as a set of Java classes under the Java Development Kit
(JDK) version 1.4.2. Therefore it needs a Java Runtime Environment (JRE) that is
able to execute code developed with this version of the JDK.

The version of the TDL compiler used is a development version from April 2004. It
contains only basic support for distribution and will certainly be developed further.



62

The version of the TTP tool suite by TTTech used for the plugin development is
release R6.3 from December 2003. It contains TTPplan version 4.4, TTPbuild version
4.4, TTPload version 5.4, TTPview version 5.10 and a version of TTPos for the
MPC555 platform with TTPChip AS8202 in version 4.4. The tools must be installed
with valid installation keys. It is important to properly customize the file mysetup.bat
that is typically located in C:\TTTech\BSP. Most importantly this file contains the
path to the C compiler and if not set properly the plugin is unable to invoke the
compilation of files.

As C compiler the Diab C/C++ Compiler for PowerPC in version 5.0 by Windriver was
used. This compiler is recommended by TTTech and also shipped together with their
development hardware. It requires a valid license. During installation a lot of
questions concerning the hardware target are asked. It is not necessary to answer
them correctly as the batch files for compilation overrule those settings anyway.

The hardware platform used for development was a TTP development cluster by
TTTech that consisted of four TTP PowerNodes PN212 and a TTP MonitoringNode.

The plugin only works under Microsoft Windows despite the fact that it is a Java
program. The reason is that the TTP tools and also the batch files for compilation that
are included only work on Windows and to date there is no version for other
operating systems available.
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Figure 19 Plugin Class Diagram
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3.7.1 Classes

All classes the plugin consists of are contained in the Java package
emcore.tools.tdlc.platform.ttp. Figure 19 presents all classes and their relations
to each other. It illustrates that TTPPlatform is the main class that coordinates and
controls the generation process. The decomposition of the plugin is mainly driven by
the structure and type of the output and resulted in three classes TTPplanScript,
TTPbui ldScript and TTPGlueCode for creating scripts for TTPplan and TTPbuild and
generating the glue code that lets the functionality code interface with the TTP
platform.

In the following all Java classes of which the plugin consists of are listed and their
purpose and function is described.

TTPPlatform

TTPPlatform

+ emitCode(destDir, module) : void

Figure 20 TTPPlatform Class Diagram

This class implements interface Platform and represents the core of the TDL
compiler plugin for integration with TTP. All internal and external activities for
generating binaries for the TTP platform are coordinated by the implementation of
method emitCode. The name of this class must be specified with option —platform of
the TDL compiler command line interface in order to activate this plugin.

TTPMessage

TTPMessage

+ TTPMessage(name, type, initValue, period, generatedBy)
+ getName() : String

+ getType() : String

+ getlnitValue() : String

+ getPeriod() : String

+ getGeneratedBy() : String

+ toString() : String

Figure 21 TTPMessage Class Diagram

This class represents a message on the TTP bus and is instantiated and used by class
TTPPIatform. A TTPMessage object is a container for message attributes. It provides
getter methods to access the attributes and does not do further calculations.
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TTPplanScript

TTPplanScript

+ TTPplanScript(cluster, clusterDatabaseFilename)

+ createMessage(name, initValue, agreement) : void

+ createMessage(name, initValue) : void

+ createClusterMode(name) : void

+ linkMessageMode(clusterMode, message, period, redundancyDegree) : void
+ createSubsystem(name, reintegrationType) : void

+ createHostAndSlot(name, serialNumber, controllerType) : void

+ linkHostSubsystemClusterMode(host, subsystem, clusterMode) : void

+ createCluster(lenghtOfTDMARound, transmissionSpeed, byteOrder) : void
+ linkClusterClusterMode(clusterMode) : void

+ createMessageType(name, length, category, cTypelLength, cTypeDef) : void
+ linkMessageMessageType(message, messageType) : void

+ linkSubsystemMessage(subsystem, message) : void

+ linkClusterModeAfterClusterMode(sucessor, predecessor) : void

+ linkHostClusterMode(host, clusterMode) : void

+ linkHostClusterMode(host, clusterMode, modeAllowedToChangeTo) : void
+ linkHostCluster(host) : void

+ getScript() : String

Figure 22 TTPplanScript Class Diagram

This class is a wrapper for generating TTPplan scripts that can be passed as
argument to TTPplan in order to generate a valid object model and eventually the
cluster communication schedule. The class provides a number of methods for
defining the TTPplan object model by creating objects and links between them and
specifying their attributes. A description of all relevant entities can be found in 3.5.1.
Furthermore it has a method for obtaining the generated script.

TTPbuildScript

TTPbuildScript

+ TTPbuildScript(node, clusterDatabaseFilename, nodeDatabaseFilename)

+ setHardware(hardware) : void

+ createApplicationMode(name, clusterModeToLink) : void

+ createSubsystem(name) : void

+ createTask(name, timeBudget, subsystemToLink, applicationModeToLink) : void

+ createTask(name, timeBudget, subsystemToLink, applicationModeToLink, period,
phase, deadline) : void

+ createLocalMessage(name, type, period, initValue) : void

+ linkMessage(messageToLink, taskToLinkTo, sends, receives) : void

+ createLocalMessageFromTo(name, type period, taskFrom, taskTo) : void

+ getScript() : String

Figure 23 TTPbuildScript Class Diagram
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This class is a wrapper for generating TTPbuild scripts. The two TTP tools are very
similar regarding their programming interface and so this class is very much like
class TTPplanScript, with the difference that it is designed to create an object
model for TTPbuild. A list of the relevant entities can be found in 3.5.2.

The wrapper classes for TTPbuild and TTPplan do not only map a method call to a
single instruction in the script for the tools, but also do some processing. For
example when the method createTask is invoked, also links are generated to link
tasks to a subsystem and an application mode. The idea is to provide a convenient
and powerful interface to simplify the usage for class TTPPlatform.

TTPGIlueCode

This class generates the C glue code for every node. The glue code acts as a
middleware layer between the TTP platform, which mainly consists of the operating

TTPGlueCode

+ createTask(name, srcPorts) : void

+ addInclude(includeFileName) : void

+ createEMachineActuator(eMachine, actuatorPort, message) : void

+ createEMachineSensor(eMachine, sensorPort, message,
isMessageOutsideEMachine) : void

+ createEMachineRetransmission(eMachine, fromMessage, toMessage) : void

+ getCode() : String

Figure 24 TTPGlueCode Class Diagram

system TTPos and the FT-Com layer, and the functionality code for tasks and drivers
that are provided by the user in a standardized form. It also contains automatically
generated code for the E machine-like tasks that handle the reception of bus
messages and the execution of drivers. The class has methods for adding tasks,
sensors, actuators and messages the E machine-like tasks have to retransmit. It also
provides a method to obtain the generated C code.

TTPGlueCodeEMachine

TTPGlueCodeEMachine

+ TTPGlueCodeEMachine(name)

+ createActuator(actuatorPort, message) : void

+ createSensor(sensorPort, message, isMessageOutsideEMachine) : void
+ createRetransmission(fromMessage, toMessage) : void

+ getCode() : String

+ getEMachineName() : String

Figure 25 TTPGlueCodeEMachine Class Diagram

This is a helper class for TTPGlueCode and is instantiated and maintained by it. Its
purpose is to collect lines of code that belong to the code of the E machine-like tasks.
This is necessary because these tasks typically contain lines of code for different
modules and there may also be multiple E machine-like tasks for different
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frequencies. Every instance of this class represents a single E machine-like task and
has a method to return the appropriate code to class TTPGlueCode.

TTPProperties

TTPProperties

+ TTPProperties(destDir)
+ getProperty(name) : String
+ propertyExists(name) : boolean

Figure 26 TTPProperties Class Diagram

This class handles the access to the property file that contains specifications in
addition to the TDL modules. It is instantiated by an instance of the TTPPlatform
class with the name of the property file and then provides access to it including error
handling for non-existent properties.

TTPTypeMapping

TTPTypeMapping

+ TTPTypeMapping(directory)

+ getCTypeDef(tdIType) : String

+ getCTypeLength(tdIType) : String
+ getLength(tdIType) : String

+ getCategory(tdiType) : String

Figure 27 TTPTypeMapping Class Diagram

This class handles the mapping of TDL types to types in C and types specific to the
TTP tools. It is instantiated with the directory where the external file
types.properties is located, which contains a mapping for every standard TDL type
and also gives the user the ability to alter the mapping or to define custom types.
The class provides four methods for getting the properties of a TDL type.

TTPAuxiliary

+ addModule(module) : void

+ getModules() : Module]]

+ getTTPTypeMapping() : TTPTypeMapping

+ setTTPTypeMapping(ttpTypeMapping) : void
+ setDestDir(destDir) : void

+ getDestDir() : String

Figure 28 TTPAuxiliary Class Diagram
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TTPAuxiliary

This is an auxiliary class which serves other classes with objects that are static
throughout the whole plugin lifetime. It provides access to the destination directory
and the type mapping class. Furthermore it is used to cache all modules that are
processed by the TDL compiler, as the plugin needs to have all compiled modules
available before it can start generating scripts and code.

Executer

Executer

+ call(verbose, command, environment, directory) : ProcessOutput

Figure 29 Executer Class Diagram

This class provides the ability to execute external programs from within Java. It also
takes care of the standard and error output and the return value of a command. The
call method is called with the path and name of the executable, optional environment
variables and the working directory. It returns an instance of the class
ProcessOutput described below.

ProcessOutput

ProcessOutput

+ setExitValue(exitValue) : void
+ getExitValue() : int

+ addStdOutput(toAdd) : void
+ getStdOutput() : String

+ setErrOutput(toAdd) : void

+ getErrOutput() : String

Figure 30 ProcessOutput Class Diagram

This is a helper class for class Executer. It is used to collect the standard and error
output of an external program execution as well as the exit value of it and provides
methods to read this data in a convenient way.

Tools

+ fileCopy(source, destination) : void
+ writeStringToFile(text, filename) : void
+ readStringFromFile(filename) : String
+ replaceAll(text, what, with) : String

Figure 31 Tools Class Diagram
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Tools

This is a helper class that provides static methods for copying files, reading and
writing a String to a file and a method to replace all occurrences of a string in
another string.

3.7.2 Program Flow

This section describes step-by-step what the plugin does. For better readability the
flow of actions is divided in smaller parts that follow each other.

Initialization

After the plugin is called by the TDL compiler via method emitCode, the property file
is read and the value of LastModule is compared to the name of the current module.
The plugin has to wait until the last module is compiled by the compiler before it can
start its work. All module objects are stored by the TTPAuxiliary class in order to be
available for every instance of the plugin invoked during the compilation process.

When the last module is reached, the plugin starts with reading the type mapping
property file and instantiating the corresponding class TTPTypeMapping. It also
processes the destination directory and sets the appropriate value in the
TTPAuxiliary class. All files generated by the plugin are stored in the subdirectory
TTP which is created in the destination directory that is passed by the compiler as
parameter of the emitCode method.

TTPplan Script Generation

In order to generate the script for TTPplan, the plugin first needs to determine a list
of all messages that need to be transferred via the TTP bus and creates subsystems
for them. As mentioned earlier, TTP subsystems can be mapped to TDL modules and
so for every module that sends a message a subsystem is created. Then every
module is analyzed with respect to public ports for which a message has to be
created with the corresponding TTP type that can be found through class
TTPTypeMapping with the TDL type name. Furthermore the period of each message is
computed. Also other properties such as the type of RDA algorithm to be used and
channel redundancy are processed. During those actions also the shortest message
period is determined that is needed to specify the length of a TDMA round of the
cluster.

The next important step is to create hosts and to link them to the subsystem. For
this purpose the information which module runs on which host is necessary. This
mapping is obtained by reading the property file. All modules are iterated and the
[module]-Node entry in the property file is analyzed. This way also the list of nodes
in the cluster is determined. The information gained is used to create hosts, link
them to slots and the cluster object and assign subsystems to them. Furthermore
during this iteration the TTPbuild script generation is invoked with a list of modules
each node has to execute. Finally the script is written to a file for later processing by
TTPplan.

A detailed description of how to map the TDL modules to the TTPplan object model
can be found in 3.5.1.
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TTPbuild Script and Glue Code Generation

For each host a dedicated script for TTPbuild and glue code is generated. The data
needed for this step consist of the name of the host, a list of modules the host should
execute, the destination directory and the filename of the cluster database.

First all necessary classes, namely TTPbuildScript and TTPGlueCode, are initialized.
Next an iteration over all modules of the host is performed. The first action in this
iteration is copying the files <module>_h and <module>.c to the directory of the host.
Those files must exist and must contain the header and body file of the functionality
code for the TDL module. The name of the header file is also passed on to the glue
code generator class to add an appropriate include statement to the glue code.
What happens next is to carry out all steps to realize the mapping of TDL modules to
the TTPbuild object model and the generation of the glue code that are described in
3.5.2 and 3.5.3 respectively. The plugin does this by calling the appropriate functions
of the classes TTPbui ldScript and TTPGlueCode. Finally the glue code and the script
for later execution with TTPbuild are stored in the destination directory of the host.

Script Execution and Compilation

After the generation of the scripts for TTPplan and TTPbuild is completed, first the
batch version of TTPplan is called with the appropriate script as parameter. The tool
outputs the MEDLs for each host and a cluster database file containing the cluster
schedule. Successful execution of the tool is checked by analyzing the exit value,
which should be zero, and additionally by checking if the output contains the string
"Schedule successfully made". Otherwise the plugin stops with an error message.
For debugging reasons the output of the execution of the tools is always outputted to
the console.

Next TTPbuild is called once for every node with the appropriate script generated by
the plugin as parameter. The success of the execution is again checked by analyzing
the exit value and checking the output for strings that indicate a successful run of the
tool. TTPbuild creates three files for every host that are written to the corresponding
host directory: ttpc_ftl.c, ttpc_msg.h and ttpos _conf.c. Those files contain the
static schedule table, in which all task invocations are specified, and the fault tolerant
communication layer that acts as an interface between tasks and messages on the
TTP bus.

Before the Diab C compiler can be invoked, some additional files have to be copied
from the ResourceDirectory specified in the property file. Two of them are the files
make.bat and prj_setup.bat which were provided by TTTech for the compilation of
applications developed with their tools. Furthermore the file main.c, which contains
some initialization routines, needs to be copied to every node directory. main.c
needs to be patched in order to contain the name of the application mode that is
used throughout the system. To work properly the compiler script needs a valid
mysetup.bat file that is typically located in the directory C:\TTTech\BSP, which most
importantly contains the path to the compiler binaries. Finally the plugin invokes the
compiler for every host, checks if the compiled and linked binary was created
successfully and copies the file to the download database directory created by
TTPplan before. At this point all what is left to do for the user is to start TTPload and
download the application to the TTP cluster hardware.
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Chapter 4

Demo Application

4.1 Experimental Setup

The demo application that is used to demonstrate the application of the developed
TDL-TTP tool chain is described in this section. Although it is a rather simple example
it is sophisticated enough to show basic fault tolerance behavior such as replication
and redundancy. Furthermore the hardware and software environment used for the
demo is described.

Hardware Setup

Figure 32 TTP Development Cluster by TTTech

The hardware platform used for the demo application is a TTP development cluster
provided by TTTech. Figure 32 shows the setup with the actual cluster on the left, the
monitoring node in the middle a standard laptop PC on the right. The cluster consists
of a power supply and a number of TTP Powernodes. For the demo application four of
these nodes with the model number PN212 were used. The monitoring node acts as a
gateway between the TTP bus and standard Ethernet and is used for programming
the host CPUs and the TTP chips and for monitoring all data on the TTP bus at
runtime.

The TTP-Powernode is a board that integrates a powerful Motorola MPC555 CPU with
a TTP-Chip C2 communication controller, which is an implementation of the TTP/C
protocol in silicon. [12] contains details of the board layout and functioning.
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Software Setup

The software setup consists of the tools listed in 3.7 above, that are required for the
TTP plugin for the TDL compiler to run. All tools were installed on a Windows XP
system.

Demo Application

The demo application is meant to be a simple demonstration that the TDL plugin for
the TTP platform described in Chapter 3 actually works as intended. It uses a number
of modules that are distributed on four nodes and that use tasks, sensors and
actuators. The goal was to use all fault tolerance mechanisms described in 3.4.

Node 1 Node 3
Producer2A
¥ ConsumerA
Producer1
Node 2 Node 4
Producer1
4 ConsumerB
Producer2B }i

Figure 33 Demo Application Data Flow Diagram

The functionality of the demo application consists of three independent counters that
simply count upwards. The four nodes are divided into two producer and two
consumer nodes. Figure 33 shows the data flow between the nodes and the
associated modules. Each producer - denoted by Nodel and Node2 in the figure -
generates a counter value and an additional counter called Counterl is replicated on
both producer nodes. The consumer nodes Node3 and Node4 receive the counters.
Node3 receives the counter value Counter2A produced by Nodel and Node4 receives
the counter from the second producer node denoted by Node2. The replicated counter
Counterl is received on both consumer nodes and in addition both are aware of the
number of operational replicas. The values of the counters are indicated by LEDs on
each node and the actual values can also be monitored on a PC.

Figure 34 is a symbolic picture of the TTP Powernode with a description of the LEDs.
As shown in the figure, five LEDs are available to the application on the host CPU,
whereas the other two green LEDs are reserved to display the status of the TTP
communication controller. The demo application uses the two yellow HOST4 and
HOST5 LEDs to display the current value of the counter. The LEDs blink with a fixed
period and the phase of the blinking corresponds to the current value. The idea is to
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see that the values on different nodes are the same when the blinking of the LEDs is
in sync. The left LED of every node indicates the value of the replicated counter value
whereas the right LED indicates the other counter value that is produced or
consumed by a node with a different blinking period. So when all nodes of the cluster
are started at the same time initially all left LEDs of the nodes and all right LEDs are
in sync and will stay in sync unless one of the producer nodes is reset, which also
results in a reset of the counter value. On the consumer nodes also the red LEDs
HOST2 and HOST3 are used to indicate the status of the replicas of the replicated
counter. The two LEDs are used as alarm or warning LEDs that indicate the failure of
one replica with one red LED and the failure of both with two red LEDs switched on.

-

o {tip
PN211 Left Side Right Side
90— RESET Switch  HOSTI
o0 A HOST2 HOST3
00 HOST4 HOSTS
@@c

TTP/Ca TTP/Cb

OidLll

OidLL

13

Vidll

NYJ

Figure 34 TTP Powernode LEDs

4.2 Implementation

This section is dedicated to the implementation details of the demo application.
Everything from the TDL modules and property file entries, the generated object
model and bus and task schedules to the generated glue code is presented and
discussed.

4.2.1 TDL Code

In the following the TDL code and the corresponding functionality code of the demo
application is presented and explained. It consists of five TDL modules that are split
in three producer and two consumer modules.
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Producer Modules

The producer modules generate a counter value and indicate that value by means of
an actuator which is a blinking LED as described above. The three modules are very
similar. There are only differences in the name of the module, the counter value and
the functionality code calls. As example here is the code of module Producerl.tdl:

module Producerl {

actuator
short YellowLED1 uses setYellowlLED1;
public task Producel [100us] {

output
short Counterl := O;

uses producellmpl(Counterl);

}

start mode DemoMode [4000us] {

task
[1] Producel();

actuator
[1] YellowLED1:=Producel.Counterl;

}

This module consists of an actuator for driving the LED, a task that actually produces
that value and increments it and a mode that invokes the task and the actuator
update. The keyword public indicates that the task output ports can be accessed by
other modules and therefore have to be transferred over the TTP bus.

Drivers like setYellowLED1 and task code like producellmpl have to be provided in
the functionality code file. The file that contains them must be called Producerl.c
with a corresponding header file Producerl.h. Producerl.c looks like this:

#include "drivers.h"

void producellmpl(short int *value) {
value = value + 1;

}

As can be seen the task simply adds 1 to the counter that is passed as a reference.
The functionality code for the actuator is contained in the referenced file drivers.h,

which contains all drivers for all modules. The following is an excerpt of the file
drivers.c that illustrates the relevant functions for the producer module:

#include "TTPos.h"

void setYellowLED1(short int value) {
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LED (LED_YELLOW_1, value & 0x100);
3

void setYellowLED2(short int value) {
LED (LED_YELLOW 2, value & 0x200);

}

This code realizes the blinking of the LEDs according to the value of the counter. The
header file TTPos.h provides access to the LED functions of the operating system.

Consumer Module

The consumer module receives the counter values from the bus by accessing output
ports of modules located on a remote node by using the import statement with the

corresponding modules. In the following is the TDL code for one of the two consumer
modules ConsumerA.tdl is presented:

module ConsumerA {

import Producerl;
import Producer2A;

sensor

short CounterlMessageStatus uses REPL_Counterl;

actuator

short YellowLED1 uses setYellowLED1;
short YellowLED2 uses setYellowLED2;
short RedLEDs uses setRedLEDs;

start mode DemoMode [4000us] {
actuator

[1] YellowLED1 := Producerl.Producel.Counterl;
[1] YellowLED2 := Producer2A.Produce2A.Counter2A;
[1] RedLEDs := CounterlMessageStatus;

}

As can be seen the consumer modules do not contain any task. The sensor value and
values from other imported modules are directly used as input for actuator updates.
The message status of Counterl indicates how many replicas producing this message
are present. This value is accessed by the special driver REPL_Counterl that does
not require functionality code as it is processed in a special way by the plugin as
described in 3.5.3.

The drivers for the actuators are contained in the file drivers.c. In addition to the
two drivers whose code is denoted above, a driver for the red LEDs is provided:

void setRedLEDs(short int value) {
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if (value > 1)
{
LED_OFF (LED_RED_1);
LED OFF (LED_RED 2);
}
else if (value)
{
LED _ON (LED_RED_1);
LED_OFF (LED_RED_2);

else

{
LED_ON (LED_RED_1);
LED_ON (LED_RED_2);
3
3

This function implements the red warning LEDs that indicate the failure of one or two
replicas of the Producerl module.

4.2.2 Property File

A Java property is used for specifying distribution and fault-tolerance aspects and
platform specific details. Basically it contains all properties that need to be known in
order to generate a distributed, fault-tolerant application for the TTP platform but
cannot be determined from the TDL modules. All properties and the syntax of the file
are explained in 3.6. The filename has to be TTPPlatform.properties and the file

must be in the destination directory specified when calling the TDL compiler.

TTPPIanLocation=C:\\TTTech\\TTPplan\\4_4\\TTPplan_batch.exe
TTPBui ldLocation=C:\\TTTech\\TTPbui 1d\\4_.4\\TTPbuild batch.exe
CMDLocation=C:\\windows\\system32\\cmd.exe
ResourceDirectory=C:\\Demo\\resource

These properties tell the plugin where to find required files and executables.
LastModule=ConsumerB

The last module can be any module that is later passed to the compiler as the last
one in the list of modules to be compiled at the command line.

FilesToCopyForEachNode=drivers._h:drivers.c

As mentioned above, the demo application uses the same driver code in the files
drivers.h and drivers.c for all modules. These files must be specified to make the

plugin copy them to each node directory for compilation and linking.
ClusterName=DemoCluster
It is required to specify a name for the cluster.

TransmissionSpeed=5000

For the transmission speed on the TTP bus the maximum value is used. This gives
the bus scheduler more freedom to find a correct schedule for the application.
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Producerl._Node=Nodel:Node2
Producerl1.RDA=RD 1 valid
Producerl.ReintegrationType=Reinit_Reintegration

The module Producerl is specified to be executed redundantly on two nodes. This
also makes it necessary to choose an RDA algorithm. RD_1 valid just picks the first
valid message that contains a value produced by the module. For the reintegration
type we request that the module tries to reintegrate by reinitialization.

Producer2A.Node=Nodel
Producer2A_ReintegrationType=Reinit_Reintegration

Producer2B._Node=Node2
Producer2B.ReintegrationType=Reinit_Reintegration

ConsumerA.Node=Node3
ConsumerA.ReintegrationType=Reinit_Reintegration

ConsumerB.Node=Node4
ConsumerB_ReintegrationType=Reinit_Reintegration

Also all other modules must be distributed among the nodes. Note that for example
on Nodel two modules are executed.

Counterl.ChannelRedundancy=2
Counter2A.ChannelRedundancy=2
Counter2B.ChannelRedundancy=2

For all public output ports of tasks the channel redundancy is set to 2, so that both
TTP channels are used for transmission.

4.3 Execution

In the following the output of the execution of the TDL compiler and the plugin for
the TTP platform including the output of invoked TTP tools is presented.

4.3.1 Compiler Invocation

The TDL compiler is invoked for the demo application with the following command:

jJava emcore.tools.tdlc.Compiler —d . —platform
emcore.tools.tdlc.platform.ttp.TTPPlatform Producerl.tdl
Producer2A.tdl Producer2B.tdl ConsumerA.tdl ConsumerB.tdl

As destination directory the current directory is used. This is also the directory where
the property file named TTPPlatform.properties must be located. As usual when
calling java programs the file Compiler.class is located in the directory
\emcore\tools\tdlc relative to the current directory or a location listed in the
CLASSPATH environment variable. This also analogously applies to the file
TTPPIatform.class. The TDL module files must be located in the current directory
too. The order in which modules are passed at the command line does not matter
except for the requirement that modules that provide functionality to other modules
need to precede modules that use it. The only requirement is that the last module is
the one that is specified as LastModule in the property file.
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4.3.2 TTPplan Script

TTPplan is the first tool the plugin creates a script for and executes it. Below the
method calls of the wrapper class TTPplanScript and the generated script for the
demo application together with some remarks are presented. It is the complete script
without any modifications.

TTPplanScript ttpPlan = new TTPplanScript('DemoCluster",
"C:\Demo\.\TTP\DemoCluster.cdb™);

TTA_Application_Command.run ("File_New", "DemoCluster™)

The beginning of the script creates a new cluster database file.

ttpPlan.createClusterMode(*'DemoMode_clustermode™);

TTA.Cluster_Mode.define ("DemoMode_clustermode®, i_frame_factor = 2)
TTA.Cluster_Mode_after_Cluster_Mode.add (TTA.Cluster_Mode.instance ("DemoMode_clustermode®),
TTA.Cluster_Mode. instance ("Startup_Mode®))
TTA.Cluster_Mode_after_Cluster_Mode.link ("DemoMode_clustermode®, "Startup_Mode").set
(request_mode_change = "1%, raw=1)
TTA.Cluster_Mode_of_Cluster.add (TTA.Cluster_Mode.instance ("Startup_Mode®),
TTA.Cluster.instance ("DemoCluster®))
ttpPlan. linkClusterClusterMode("'DemoMode_clustermode™);
TTA.Cluster_Mode_of_Cluster.add (TTA.Cluster_Mode.instance ("DemoMode_clustermode®),
TTA.Cluster.instance ("DemoCluster®))
This first block deals with the creation of the cluster mode for the TDL mode in the

modules. In addition TTPplan requires creating a startup mode as described in 3.5.1.

ttpPlan.createSubsystem("'Producerl’™, "Reinit_Reintegration'™);

TTA.Subsystem.define ("Producerl®, reintegration_type = “"Reinit_Reintegration®, raw=1)

ttpPlan.createMessage("'Counterl™, 0, "RD_1 valid™);

TTA_Message.define ("Counterl®, agreement = "RD_1 valid®, init_value = "0", raw=1)

ttpPlan. linkMessageMode("'DemoMode_clustermode', "Counterl'™, 4000, 2);

TTA.Cluster_Mode_uses_Message.add (TTA.Cluster_Mode.instance ("DemoMode_clustermode®),
TTA._Message. instance ("Counterl®))

TTA.Cluster_Mode_uses_Message. link ("DemoMode_clustermode®, "Counterl®).set ( d_period = 4000,
redundancy_degree = 2)

ttpPlan. linkSubsystemMessage(*'Producerl’™, "'Counterl');

TTA.Subsystem_sends_Message.add (TTA.Subsystem.instance ("Producerl®), TTA.Message.instance
("Counterl™))

ttpPlan.createMessageType(''short™, "2, "INT", "short int", "2');

TTA_Msg_Type_P.define ("short®, length = "2", type_cat = "INT", typedef = "short int",
type_length = 2%, raw=1)

ttpPlan. linkMessageMessageType(*'Counterl', '"'short');

TTA_Message_uses_Msg_Type.add (TTA.Message.instance ("Counterl®), TTA_Msg_Type_P.instance
("short®))

This block defines the subsystem Producerl for the corresponding module. The
messages for the module are created and linked to the appropriate message type
and subsystem. Note that the message type short is also created on first usage.
With the link between a message and the cluster mode also the attributes for the
message period and its redundancy degree are determined.

ttpPlan.createSubsystem(*'Producer2A™, "Reinit_Reintegration');
TTA.Subsystem.define ("Producer2A®, reintegration_type = "Reinit_Reintegration”, raw=1)

ttpPlan.createMessage("'Counter2A™, 0);
TTA_Message.define ("Counter2A®, init_value = 0)
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ttpPlan. linkMessageMode(*'DemoMode_clustermode™, "'Counter2A™, 4000, 2);
TTA.Cluster_Mode_uses_Message.add (TTA.Cluster_Mode.instance (“DemoMode_clustermode®),
TTA.Message. instance ("Counter2A%))
TTA.Cluster_Mode_uses_Message. link ("DemoMode_clustermode”, "Counter2A™).set ( d_period = 4000,
redundancy_degree = 2)
ttpPlan. linkSubsystemMessage("'Producer2A™, "'Counter2A™);
TTA.Subsystem_sends_Message.add (TTA.Subsystem.instance ("Producer2A®), TTA_Message.instance
("Counter2A™))
ttpPlan. linkMessageMessageType(*"Counter2A™, 'short™);
TTA.Message_uses_Msg_Type.add (TTA.Message.instance ("Counter2A™), TTA.Msg_Type_P.instance
("short™))
This block creates the subsystem, message and appropriate links for the Producer2A

module.

ttpPlan.createSubsystem("'Producer2B', '"Reinit _Reintegration');

TTA.Subsystem.define ("Producer2B®, reintegration_type = "Reinit_Reintegration”, raw=1)

ttpPlan.createMessage(*'Counter2B™, 0);
TTA_Message.define ("Counter2B", init_value = 0)

ttpPlan. linkMessageMode (*'DemoMode_clustermode', ''Counter2B', 4000, 2);
TTA.Cluster_Mode_uses_Message.add (TTA.Cluster_Mode.instance ("DemoMode_clustermode®),
TTA_Message. instance ("Counter2B®))
TTA.Cluster_Mode_uses_Message. link ("DemoMode_clustermode”, "Counter2B").set ( d_period = 4000,
redundancy_degree = 2)
ttpPlan. linkSubsystemMessage(*'Producer2B', 'Counter2B'™);
TTA.Subsystem_sends_Message.add (TTA.Subsystem.instance ("Producer2B®), TTA.Message.instance
("Counter2B™))
ttpPlan. linkMessageMessageType(‘'"Counter2B', ''short'™);
TTA_Message_uses_Msg_Type.add (TTA.Message.instance ("Counter2B*), TTA.Msg_Type_ P.instance
("short™))
This block creates the subsystem, message and appropriate links for the Producer2B

module.

ttpPlan.createCluster(2000, '5000", "big_32_endian'™);
TTA.Cluster.define ("DemoCluster®, byte_order = "big_32_endian®", tr_period = "2000",
transmission_speed = "5000°, raw=1)
This command creates the cluster object with transmission speed according to the
property file and sets the length of the TDMA round (tr_period) according to the

shortest message period.

ttpPlan.createHostAndSlot("'Nodel™, 1, "TTTech _C2');

TTA_Host.define ("Nodel®, mux_round = 1%, mux_period = "1%, serial_number = "1°,
controller_type = "TTTech_C2", raw=1)

TTA.Slot.define ("Nodel_slot")

TTA_Host_uses_Slot.add (TTA.Host.instance (“Nodel®), TTA.Slot.instance ("Nodel_slot"))

ttpPlan. linkHostClusterMode("'"Nodel", "‘DemoMode_clustermode'™);

TTA_Host_in_Cluster_Mode.add (TTA.Host.instance (“Nodel®), TTA.Cluster_Mode.instance
("DemoMode_clustermode™))

TTA_Host_in_Cluster_Mode.add (TTA.Host.instance ("Nodel®), TTA.Cluster_Mode.instance
("Startup_Mode"))

TTA.Host_in_Cluster_Mode.link ("Nodel", "Startup_Mode").set (may_request_mode_changes =
“DemoMode_clustermode®™, raw=1)

ttpPlan. linkHostCluster(*'Nodel');
TTA_Host_in_Cluster.add (TTA.Host.instance ("Nodel®), TTA.Cluster.instance ("DemoCluster®))

ttpPlan. linkHostSubsystemClusterMode(*'Nodel', "Producerl',
""DemoMode_clustermode');
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TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ("Nodel®), TTA.Subsystem.instance
("Producerl®), TTA.Cluster_Mode.instance ("DemoMode_clustermode®))
ttpPlan. linkHostSubsystemClusterMode(*"Nodel™, "Producer2A™,
""'DemoMode_clustermode™™);
TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ("Nodel"), TTA.Subsystem.instance
("Producer2A™), TTA.Cluster_Mode. instance ("DemoMode_clustermode®))
This block of code creates a host object for Nodel together with a transmission slot
for the node. Links have to be created between the host and the slot, the cluster, the
cluster mode and the subsystems the host runs.

ttpPlan.createHostAndSlot(*'"Node2", 2, "TTTech_C2'");

TTA.Host.define ("Node2", mux_round = "1%, mux_period = "1%, serial_number = "27,
controller_type = "TTTech_C2", raw=1)
TTA_.Slot.define ("Node2_slot")
TTA_Host_uses_Slot.add (TTA.Host.instance ("Node2"), TTA.Slot.instance ("Node2_slot"))
ttpPlan. linkHostClusterMode(*'"Node2", "‘DemoMode_clustermode™™);

TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ("Node2"), TTA.Cluster_Mode.instance
("DemoMode_clustermode™))

TTA_Host_in_Cluster_Mode.add (TTA.Host.instance ("Node2"), TTA.Cluster_Mode.instance
("Startup_Mode*"))

TTA_Host_in_Cluster_Mode.link ("Node2", "Startup_Mode").set (may_request_mode_changes =
"DemoMode_clustermode®, raw=1)

ttpPlan. linkHostCluster(*"Node2™);
TTA_Host_in_Cluster.add (TTA.Host.instance ("Node2"), TTA.Cluster.instance ("DemoCluster®))

ttpPlan. linkHostSubsystemClusterMode(*"Node2", "Producerl™,
""DemoMode_clustermode');
TTA_.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ("Node2"), TTA.Subsystem.instance
("Producerl®), TTA.Cluster_Mode.instance ("DemoMode_clustermode®))
ttpPlan. linkHostSubsystemClusterMode(*"Node2"™, "Producer2B",
""'DemoMode_clustermode™™);
TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ("Node2"), TTA.Subsystem.instance
("Producer2B™), TTA.Cluster_Mode. instance ("DemoMode_clustermode®))

This block creates all necessary objects and links for Node2.

ttpPlan.createHostAndSlot("'"Node3", 3, "TTTech_C2'™);

TTA_Host.define ("Node3", mux_round = "1%, mux_period = "1%, serial_number = "37,
controller_type = "TTTech_C2", raw=1)
TTA_Slot.define ("Node3_slot")
TTA.Host_uses_Slot.add (TTA.Host.instance ("Node3"), TTA.Slot.instance ("Node3_slot"))
ttpPlan. linkHostClusterMode(*'"Node3', '"‘DemoMode_clustermode'™);

TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ("Node3"), TTA.Cluster_Mode. instance
("DemoMode_clustermode™))

TTA_Host_in_Cluster_Mode.add (TTA.Host.instance ("Node3"), TTA.Cluster_Mode.instance
("Startup_Mode™))

TTA.Host_in_Cluster_Mode.link ("Node3", "Startup_Mode").set (may_request_mode_changes =
“DemoMode_clustermode®, raw=1)

ttpPlan.linkHostCluster(*"Node3™);
TTA_Host_in_Cluster.add (TTA.Host.instance (“Node3"), TTA.Cluster.instance ("DemoCluster®))

ttpPlan. linkHostSubsystemClusterMode(*"Node3™, "ConsumerA™,
""'DemoMode_clustermode™);

TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ("Node3"), TTA.Subsystem.instance
("ConsumerA™), TTA.Cluster_Mode. instance ("DemoMode_clustermode®))

This block creates all necessary objects and links for Node3. Note that here only one
subsystem is linked according to the mapping in the property file.

ttpPlan.createHostAndSlot("'"Node4", 4, "TTTech_C2');

TTA.Host.define ("Node4", mux_round = "1%, mux_period = "1%, serial_number = "47,
controller_type = "TTTech_C2", raw=1)
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TTA_.Slot.define ("Node4_slot*)
TTA_Host_uses_Slot.add (TTA.Host.instance (“Node4®), TTA.Slot.instance ("Node4_slot"))
ttpPlan. linkHostClusterMode(**"Node4', "‘DemoMode_clustermode™);

TTA_Host_in_Cluster_Mode.add (TTA.Host.instance (“Node4®), TTA.Cluster_Mode.instance
("DemoMode_clustermode*))

TTA_Host_in_Cluster_Mode.add (TTA.Host.instance ("Node4"), TTA.Cluster_Mode.instance
("Startup_Mode"))

TTA.Host_in_Cluster_Mode.link ("Node4", "Startup_Mode"™).set (may_request_mode_changes =
“DemoMode_clustermode®, raw=1)

ttpPlan. linkHostCluster(*'Node4');
TTA_Host_in_Cluster.add (TTA.Host.instance ("Node4®), TTA.Cluster.instance ("DemoCluster®))

ttpPlan. linkHostSubsystemClusterMode(*'Node4', 'ConsumerB',
""DemoMode_clustermode');
TTA_Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ("Node4"), TTA.Subsystem.instance
("ConsumerB™), TTA.Cluster_Mode. instance ("DemoMode_clustermode™))

This block creates all necessary objects and links for Node4.

ttpPlan.getScript()
TTA.Application_Command.run(*Schedule.Make new schedule®)
TTA_Application_Command.run("Schedule.Make MEDLs")
TTA_Application_Command.run("File.Save cluster as ...", "C:\Demo\.\TTP\DemoCluster.cdb*")
The last block of code initiates the creation of the cluster schedule and the MEDLs.
Finally the cluster database is written to file.

TTPplan Results

The complete generated object model is not easy to present here. It consists of the
objects, links and attributes created by the script presented above and all default
attributes of the objects and links. For this reason only key features of the object
model will be presented here, most importantly the generated cluster schedule.

Figure 35 illustrates the instances of the link that associates subsystems to hosts in a
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Node2 Producer2B DemoMode_clustermode
Node3 ConsumerA DemoMode_clustermode
Noded ConsumerB DemoMode_clustermode
Mode1 :l: ¥ E\J |F'ru:||:|uu:er1 illlﬂ |Demur.1ude_clustermude ¥
View | Delete

Figure 35 Mapping of Subsystem to Hosts in TTPplan

cluster mode. Hosts in context of the TTP tools are nodes of the distributed system.
This is a good example to see that the specification in the property file, in this case
the mapping of modules to nodes, is realized in the TTPplan object model.
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Figure 36 is a screenshot of the schedule editor of TTPplan showing the generated
schedule for the demo application. It shows the slots of all hosts, each slot having a
length of 500 micro seconds. The complete cluster cycle consist of two rounds, which
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Figure 36 Demo Application Cluster Schedule

results in eight slots per cluster cycle and exactly fills up the 4000 micro seconds
mode period of the TDL mode. The messages Counterl, Counter2A and Counter2B
are indicated by the various blue colored blocks. Note that the message Counterl is
sent by Nodel and Node2 because it is produced by a replicated module that is
executed on both nodes. The upper part of the blocks symbolize channel A of the TTP
bus, whereas the lower part symbolizes channel B. All blocks span over both parts,
as the messages were all specified to be transferred on both channels of the bus.

4.3.3 TTPbuild Script

The plugin creates a script for each node that is intended for the node design tool
TTPbuild. Unlike TTPplan, here one script for every node is required. As a first
example we will take a look at the complete script the plugin generates for Nodel of
the demo application.

TTPbuildScript ttpBuild = new TTPbuildScript(*'Nodel",
"C:\Demo\.\TTP\DemoCluster.cdb", "Nodel.ndb '*);
TTA_Application_Command.run("File.New node ...", "Nodel®", "C:\Demo\.\TTP\DemoCluster.cdb")
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The first command creates a new node database file. It is needed to specify the
cluster database that was created by TTPplan before here and to select which node of
the cluster should be designed.

ttpBui ld.setHardware("'"TTPpowernode C2');

TTA_Host.customize ("Nodel®, node_config = "TTPpowernode_C2", raw=1)

ttpBuild.createApplicationMode(*'DemoMode™, "'DemoMode clustermode'™);

TTA_Node.App_Mode.define (“DemoMode®, maximum_interrupt_latency = "150 us®, pos_synch_limit =
"max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2, TTA.Cluster.tc_period * 0.0015)",
neg_synch_limit = "max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2,
TTA_Cluster.tc_period * 0.0015)", neg_correction_limit = "max (
TTA.Cluster.clock_sync.macro_tick_length /7 1000 * 3, TTA.Cluster.tc_period * 0.002)",
pos_correction_limit = "max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 3,
TTA.Cluster.tc_period * 0.002)", raw=1)

TTA.Node .App_Mode_maps_to_Cluster_Mode.add (TTA.Node.App_Mode.instance ("DemoMode®),
TTA.Cluster_Mode. instance ("DemoMode_clustermode®))

This block of code sets the hardware configuration, creates an application mode and
links it to the cluster mode that is already present in the object model.

ttpBui ld.createSubsystem(*'emachine'™);
TTA.Subsystem.define (“emachine®)

ttpBuild.createTask(*'emachinel™, 75, "emachine', "‘DemoMode', 4000, O,
80);

TTA.Node.App_Task.define ("emachinel”, time_source = "local_time", time_budget = "75%, period =
“4000°, deadline = "80", phase = "0", raw=1)

TTA.Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance ("emachinel®),
TTA_Node.App_Mode. instance ("DemoMode*®))

TTA_Node.Subsystem_runs_Task.add (TTA.Subsystem.instance (“emachine-),
TTA.Node.App_Task. instance (“emachinel®))

This block deals with the creation of the E machine-like task that needs to have a
subsystem and must be linked to the application mode.

ttpBuild.createTask(*'Producel™, 100, "‘Producerl’, "‘DemoMode’);

TTA_Node.App_Task.define ("Producel®, time_source = "local_time", time_budget = "100", raw=1)
TTA.Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance ("Producel®),

TTA_Node.App_Mode. instance (“DemoMode*®))
TTA_Node.Subsystem_runs_Task.add (TTA.Subsystem.instance ("Producerl®),

TTA.Node.App_Task. instance ("Producel®))

ttpBuild. linkMessage(‘'Counterl', "Producel™, true, false);

TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("Producel™), TTA.Message.instance
("Counterl®), access_type = "agreed”, raw=1)

TTA_Node.Task_uses_Message.link ("Producel”, "Counterl®).set (sends = “yes", receives = "no-",
raw=1)

ttpBuild. linkMessage(*'Counterl', "emachinel", false, true);

TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("emachinel®"), TTA.Message.instance
("Counterl®), access_type = "agreed”, raw=1)

TTA_Node.Task_uses_Message.link (“emachinel®, “Counterl®).set (sends = "no
raw=1)

, receives = “yes”,

ttpBuild.createlLocalMessageFromTo("'Counterl_in", 'short"™, 4000,
"emachinel™, "Producel'™);

TTA.Message.define ("Counterl_in", d_period = 4000, init_value = 0)

TTA_Message_uses_Msg_Type.add (TTA.Message.instance ("Counterl_in"), TTA.Msg_Type_P.instance
("short™))

TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("emachinel®"), TTA.Message.instance
("Counterl_in"), access_type = "agreed”, raw=1)

TTA.Node.Task_uses_Message.link ("emachinel”, "Counterl_in").set (sends = "yes", receives =
"no", raw=1)

TTA_Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("Producel®), TTA.Message.instance
("Counterl_in"), access_type = "agreed”, raw=1)

TTA.Node.Task_uses_Message.link ("Producel”, "Counterl_in").set (sends = "no", receives = "yes",
raw=1)
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This block of code handles the creation of the task Producel. In order to maintain
the FLET property of TDL, as discussed in 3.5, it is required that received messages
from the bus pass the E machine-like task. This is realized by creating a local
message Counterl_in from the E machine-like task and the task. The E machine-like
task also has to receive the sent message of the task Producel because the actuator
update code inside the E machine-like task needs access to the output port of the
task.

ttpBuild.createTask(*'Produce2A™, 100, "Producer2A'™, '"DemoMode'™);

TTA.Node .App_Task.define ("Produce2A”™, time_source = "local_time", time_budget = "100", raw=1)
TTA_Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance ("Produce2A*),

TTA_Node.App_Mode. instance (“DemoMode®))
TTA._Node.Subsystem_runs_Task.add (TTA.Subsystem.instance ("Producer2A®),

TTA_Node.App_Task. instance ("Produce2A®))

ttpBuild. linkMessage(*'Counter2A"™, "Produce2A", true, false);
TTA_Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("Produce2A®), TTA.Message.instance

("Counter2A*®), access_type = "agreed”, raw=1)
TTA_Node.Task_uses_Message.link ("Produce2A®, "Counter2A™)._set (sends = "yes", receives = "no",
raw=1)

ttpBuild. linkMessage(''Counter2A"™, "emachinel', false, true);
TTA_Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("emachinel®), TTA.Message.instance

("Counter2A*®), access_type = "agreed”, raw=1)
TTA_Node.Task_uses_Message.link ("emachinel®, "Counter2A®).set (sends = "no", receives = "yes",
raw=1)

ttpBuild.createlLocalMessageFromTo(*"Counter2A_in", 'short"™, 4000,
"emachinel', "Produce2A™);

TTA_Message.define ("Counter2A_in", d_period = 4000, init_value = 0)
TTA._Message_uses_Msg_Type.add (TTA.Message.instance ("Counter2A_in"), TTA_Msg_Type_P.instance

("short™))
TTA_Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("emachinel®), TTA.Message.instance
("Counter2A_in"), access_type = "agreed”, raw=1)

TTA.Node.Task_uses_Message.link ("emachinel®, "Counter2A_in").set (sends = "yes", receives =
“no", raw=1)
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("Produce2A™), TTA.Message.instance
("Counter2A_in"), access_type = "agreed”, raw=1)
TTA_Node.Task_uses_Message.link ("Produce2A®, "Counter2A_in").set (sends = "no", receives =
“yes", raw=1)
This block of realizes the task Produce2A of the module Producer2A in an identical

way as for the previous task.

ttpBuild.getScript();
TTA.Application_Command.run(*Schedule._Make new schedule®)
TTA_Application_Command.run("Schedule.Generate code")
TTA.Application_Command.run("File.Save node as ...", "Nodel.ndb")
The last commands triggers the generation of the schedule for Nodel and the
generation of the code that contains the schedule and the FT-Com layer. Finally the
node database is saved to disk.

The second script we will take a look at is that for Node3, which only executes the
module ConsumerA. The beginning and end of the script is identical to that presented
above for Nodel. The only difference is the missing task code since the module does
not contain any tasks. It is sufficient to create an E machine-like task and link the
two messages Counterl and Counter2A to it to perform actuator updates:

TTPbuildScript ttpBuild = new TTPbuildScript(*'Node3",
"C:\Demo\.\TTP\DemoCluster.cdb", "Node3.ndb '");
TTA_Application_Command.run("File.New node ...", "Node3", "C:\Demo\.\TTP\DemoCluster.cdb")

ttpBuild.setHardware(""TTPpowernode C2');

TTA.Host.customize ("Node3", node_config = "TTPpowernode_C2", raw=1)
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ttpBuild.createApplicationMode(*'DemoMode™, "'DemoMode clustermode'™);

TTA_Node.App_Mode.define (“DemoMode®, maximum_interrupt_latency = "150 us®, pos_synch_limit =
"max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2, TTA.Cluster.tc_period * 0.0015)",
neg_synch_limit = "max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2,
TTA_Cluster.tc_period * 0.0015)", neg_correction_limit = "max (
TTA.Cluster.clock_sync.macro_tick_length /7 1000 * 3, TTA.Cluster.tc_period * 0.002)",
pos_correction_limit = "max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 3,
TTA.Cluster.tc_period * 0.002)", raw=1)

TTA.Node .App_Mode_maps_to_Cluster_Mode.add (TTA.Node.App_Mode.instance ("DemoMode®),
TTA.Cluster_Mode. instance ("DemoMode_clustermode®))

ttpBui ld.createSubsystem('emachine'™);
TTA.Subsystem.define (“emachine®)

ttpBuild.createTask("'emachinel', 75, "emachine', ''DemoMode', 4000, O,
80);

TTA_Node.App_Task.define ("emachinel”, time_source = "local_time", time_budget = "75", period =
"4000°, deadline = "80", phase = "0", raw=1)

TTA_Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance ("emachinel™),
TTA_Node.App_Mode. instance ("DemoMode*®))

TTA_Node.Subsystem_runs_Task.add (TTA.Subsystem.instance (“emachine-®),
TTA_Node.App_Task. instance ("emachinel®))

ttpBuild. linkMessage(*'Counterl', "emachinel", false, true);

TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("emachinel™), TTA.Message.instance
("Counterl®), access_type = "agreed”, raw=1)
TTA_Node.Task_uses_Message.link (“emachinel®, “Counterl®).set (sends = "no", receives = “yes”,
raw=1)
ttpBuild. linkMessage("'Counter2A™, "emachinel', false, true);

TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ("emachinel®™), TTA.Message.instance
("Counter2A®), access_type = "agreed”, raw=1)

TTA_Node.Task_uses_Message.link (“emachinel®, “Counter2A®).set (sends = "no", receives = "yes",
raw=1)

ttpBuild.getScript();

TTA_Application_Command.run("Schedule.Make new schedule®)
TTA_Application_Command.run("Schedule.Generate code")
TTA_Application_Command.run(*File.Save node as ...", "Node3.ndb")

TTPbuild Results

Again it is not easily possible to present the complete object model of a node here.
Basically the script is already a sufficient representation of the generated object
model. However what is missing is the schedule that TTPbuild generates out of the
model.



TTPbuild Show_Task_Schedule

w Task Schedule for “DemoMode' -- periocd “4000°
- 0 :z'tc DemocMode AT loc 00017
w emachinel "
Deadline *133', time_budget *75', total_time_budget *75°, bcet *10°'
- sends messages
- node lewvel “Counterl in'
- node lewvel ‘CounterZ® in'

- receives messages
L4 cluster lewvel “Counterl'

L4 cluster lewvel “CounterZd’

" 753 :'tc DemoMode FTTS ref 0001
w 1533 : tc DemoMode BT loc 0002
w "Eroducel’
Deadline *500', time_budget 100", totel time budget “10Z°, becet “10°7
-w Sends message
- cluster lewvel “Counterl'

- receives message

L4 node lewvel “Counterl in'

h "ProduceZl’
Deadline “500', time budget "100', total time budget “10Z°, bcet “10°
w sends message
L cluster level “Counterid'

- receives message
- node lewvel “CounterZl in'

L “time synch loc'
Deadline *704', time_ budget 130", totel time budget “130°, becet “10°7

w 500 :'tc DemoMode FTTS ref 0002
w "FT S5 DemoMode O
Deadline *2445', time budget “117', total time budget 117, becet "10°
w sends messages toc the TIESC Bus
» message Counterl'
BE-8lot “Model rs & 0
L4 message Counterifd’'
R-5lot “Model rs & 02

04 :'tc DemcMode AT loc 0003"
2585 :'tc DemcMode FTTR ref 0001'
- 3565 : tc DemoMode FTTR ref 0002°
w "FT B DemoMode 3°'
Deadline *3733', time_budget “1&88', total time_budget *1&8°, bcet 107
-w receives message from the TTE/C Bus

L4 message Counterl’

R-5lot “Model rs & 0X', “HeodeX rg I 0Z°'

} 3733 :’tc DemcMode FTTS ref 0003' j

Figure 37 Task Schedule of Nodel of the Demo Application
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Figure 37 is a screenshot of TTPbuild illustration the node schedule of Nodel of the
demo application. How to read to node schedule view is explained in 2.4.2. All
relevant tasks including the FT-Com layer tasks have been expanded to see all
messages that are received and sent by them. It can be seen that the E machine-like
task actually is executed at time instance zero and that the FLET property of TDL is
realized by the plugin.

FLET of Produce1
Node1 E [Counter! y Procucel |:> FT-
Producer1 Com
S
Node3 FT- [N
E
ConsumerA Com [/
Node2 | _ i> FT-
E Counter1 Produce1
Producer1 Com

Figure 38 Demo Application Task Invocation Diagram for Counterl

Figure 38 illustrates one period of the processing of the message Counterl. It starts
with the E machine-like tasks on Nodel and Node2 that receive the message
containing Counterl from the bus and pass it on to the task that uses it, which is
Producel on both nodes. Note that the task invocation time is different on both
nodes. This is drawn this way to show that due to FLET the actual instance of task
invocation does not matter. It does not represent that actual schedule for the demo
application. On both nodes the task Producel increments the counter value by one.
Then the FT-Com layer task takes care of the transmission of the messages via the
TTP bus. Node3 receives both messages with its own FT-Com task that has the
additional function of applying the specified RDA algorithm to combine both
messages containing a value of Counterl into one consistent value. This value is
passed on to the E machine-like task on Node3 where finally the actuator is updated.

4.3.4 Generated Glue Code

In the following the generated glue code for the demo application is presented. First
we will take a look at the glue code generated for Nodel where the modules
Producerl and Producer2A are executed:

#include "TTPos.h"
#include ""hal .h"
#include "ttpc_msg-h"
#include "Producerl.h"
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#include "Producer2A.h"

tt_task (Producel)

{
producellmpl(&Counterl_in);
tt_Raw_Value (Counterl) = Counterl_in;

}

tt_task (Produce2A)

{
produce2Almpl (&Counter2A_in);
tt_Raw_Value (Counter2A) = Counter2A_in;

}

tt_task (emachinel)
{
setYellowLED1(Counterl);
setYel lowLED2(Counter2A);
tt_Raw_Value (Counterl_in) = Counterl;
tt_Raw_Value (Counter2A_in) = Counter2A;

}

In the two blocks for the tasks Producel and Produce2A the functionality code of the
task is called and the produced value is passed on to the FT-Com layer for
transmission. The E machine-like task calls the two functions of the functionality code
for actuator updates and forwards two messages in order to maintain the FLET

property.

The glue code for Node3 looks quite different, as there are no tasks except the E
machine-like task:

#include "TTPos.h"
#include "hal .h"
#include ""ttpc_msg.h"
#include 'ConsumerA.h"

tt_task (emachinel)
{
short int CounterlMessageStatus = tt_Message Status (Counterl);
setYellowLED1(Counterl);
setYel lowLED2(Counter2A);
setRedLEDs(CounterlMessageStatus);

}

The E machine-like task retrieves the message status of Counterl and stores it in a
local variable. Then the appropriate actuators are updated according to the TDL code.
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Chapter 5

Evaluation

5.1 Summary

In this section the results and findings of the work are summarized. The main
purpose of the thesis was the integration of TDL with the TTP tools. In the following
various aspects of it are discussed.

Distribution

The current version of the TDL language and compiler has basic support for
distribution. This support consists of constructs to link modules with the public and
import statements. The platform specific specification of how modules should be
distributed among multiple nodes must be provided in addition to the TDL program.
The tool chain presented in this thesis performs all the necessary steps to generate
code for the distributed TTP platform out of TDL modules plus an additional property
file. It uses TTP protocol services such as time synchronization by means of the
corresponding TTP tools and introduces the necessary properties to specify the
distribution of modules among nodes. Some of those integration mechanisms may
serve as generic solutions for the integration of other distributed platforms with TDL.

Fault Tolerance

The TDL language does not provide ways to specify or handle fault tolerance. The
challenge was to identify how it is possible to realize features like replication,
redundancy and error detection for TDL modules. The module was chosen as unit of
replication and the feasibility of this choice was demonstrated. Ways to specify fault
tolerance properties for TDL modules have been developed and a solution for
providing information about the status of replicated modules by means of dedicated
sensors has been found. This may as well serve as an example for the integration of
fault tolerance features on other platforms and as contribution to the development of
a generic way to specify fault tolerance properties for TDL programs, including the
introduction of a generic error detection interface.

Reusability

A glue code generator was implemented to provide easier integration of C code with
the operating system and its services that are provided for the TTP platform. The
goal was to have no platform-specific code in the functionality code and to be able to
use the generic language bindings for C that are specified for TDL. This proofs that
the approach of TDL regarding platform-independence is feasible with the TTP
platform.

TDL Plugin Interface

The development of the plugin and the corresponding tool chain demonstrated the
flexibility of the plugin interface of the TDL compiler. The suitability for a plugin that
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realizes distribution was shown but the experience can as well be used for future
improvements to the interface. One specific suggestion for an improvement would be
to enable plugins to perform actions after the whole compilation process of multiple
modules is finished. This would avoid having the lastModule property for the plugin
proposed in this thesis and probably would be useful for plugins for other platforms
as well.

E Machine

In the presented tool chain the E machine implementation differs from former Giotto
case studies. Due to the static nature of the TTP protocol and the development tools
it made sense to make a static approach concerning the E machine as well. The E
code produced by the compiler was not used to feed an interpretative E machine.
Instead the compiler plugin processes each module and generates scripts for the TTP
tools and glue code that together realize the timing and functionality that is given by
the TDL code. This solution might again serve as a prototype for applications or
platforms with a similar static nature or where safety and reliability or easier
verifiability is preferred over flexibility.

Bus Schedule

The thesis identified typical problems of distributed scheduling, especially in
combination with the FLET assumption of TDL. It was demonstrated that maintaining
the FLET property in distributed environments is a complicated task because a lot of
constraints have to be obeyed. Although no optimal generic solution was found these
constraints were identified and a way was found to meet those constraints for simple
applications. There is still room for optimizations here in order to use the bus and
CPU time on each node more efficiently.

TTP Tools

Developing the TDL plugin tool chain also showed the capabilities of TTTech’'s TTP
tools. It was possible to realize TDL requirements like the FLET property with the help
of the powerful programming interface of those tools. On the other hand also some
weaknesses like the rather inefficient realization of the E machine-like task with
TTPbuild were identified that can be seen as a suggestion to further improve the tools
or to go for a proprietary implementation of the required functionality.

Tool Chain Comparison

The comparison between the TTP tool chain and the newly developed TDL-TTP tool
chain for the TTP platform demonstrates the differences and advantages of TDL over
traditional design approaches. The clearest advantage of TDL is its platform
independence. Existing modules and functionality code can be reused with no or
minor changes on different platforms for which a corresponding compiler plugin
exists. In contrast, applications developed for the TTP hardware do not have this
flexibility and a radical redesign is needed when changing the underlying platform.



90

5.2 Restrictions

The restrictions of the current plugin implementation and of the current version of
the TTP tools are listed in this section.

Not all language constructs of TDL are supported by the plugin for the TTP platform.
This is partly due to specific reasons as for example for public sensors as explained in
3.5, and partly because some constructs were not regarded as critical for proofing
that the integration of TDL with the TTP tools is possible. An example for the latter
would be state ports.

TDL supports functions as initialization values for output ports and actuators which
are called at runtime. As the plugin needs to know the actual init values for all ports
that need to be transferred via the TTP bus, in order to set the corresponding values
in TTPplan and TTPbuild, only constants are supported as initialization values.

Another significant restriction is that only one mode per TDL module is supported.
This is due to the limitation of the TTP tools to one application mode and the lack of
any possibility for a workaround to overcome this limitation.

A notable restriction that is due to a specific limitation in the plugin interface of the
TDL compiler is the need to have unique port names throughout the whole
application. The limitation prevented the plugin from using fully qualified names with
module and task name for the message names in the TTP tools and so identical port
names of public tasks in different modules are not allowed.

Apart from these clear limitations, not every TDL program that obeys them is
necessarily executable on the TTP platform. This might be either because the TDL
plugin is not smart enough to generate suitable cluster and node scripts or because
the TTP tools don’t find a feasible schedule. The latter can be due to the rather
inefficient implementation of the E machine-like tasks, especially when there are a lot
of different FLET periods as discussed in 3.5.

It must be said that the developed plugin is meant as a proof of concept and not as a
fully-fledged tool that is ready for production usage. It has not been tested
thoroughly enough and there is no guarantee that is works with all kinds of TDL
modules that obey the restrictions mentioned above. TDL itself is still under
development and its plugin interface might change as well, which would require
adopting the TTP platform plugin accordingly.

5.3"TDL vs. TTP Tools"

This section tries to identify the differences of developing a distributed real-time
application from design to implementation with the TTP tools and with the TTP TDL
plugin and points out the advantages and disadvantages of both choices.

A basic difference between the TTTech TTP tool chain and TDL is the two-level design
approach used by TTTech. The two levels are realized by using TTPplan for cluster
design and TTP build for node design. The idea is that a system integrator, who
employs a number of subsystem manufacturers, first designs the cluster schedule
and assigns bandwidth for the specification of messages used by the various
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subsystems. Also fault-tolerance properties have to be specified. This design
approach requires at lot of information regarding the system at this point of
development, but once the first level has been finished, the subsystem developers
are independent from each other and it is possible to test and verify subsystems
without the need to have the whole system available. This is possible as the final
cluster schedule is already known at this point. In TDL there exists no comparable
mechanism and so when using TDL as front-end for the TTP tools as described in this
thesis, the two levels are transparent and hidden from the user. So a fundamental
difference is that in the TTP tools the cluster schedule can be seen as part of the
system specification, whereas in TDL it is derived from the communication
requirements of the modules that form the system.

Additional differences that TTTech points out regard information hiding and
responsibility concerns. When using TDL, the subsystem developers would need to
provide TDL modules to the system integrator who eventually compiles them
together. Only then can be determined if they will actually run on a specific hardware
platform. TTTech argues that this would no be acceptable for their customers, as this
way on one hand a higher risk of integration is introduced and on the other hand it is
not possible to hide information of the actual implementation from another. An
additional argument is that in case of errors in the system it is harder to identify the
module developer responsible for the non-working system.

In the following the development process of the TTP tools and TDL are compared
using three categories: Determinism, compositionality and software standardization.
A more detailed analysis including a comparison to other commercial tools for the
development of distributed real-time systems can be found in [13].

Determinism

If a software component is called twice with the same input values at the same time
instances, it both times has to produce the same output values at the same time
instances. An example would be if a control component receives the same input, for
example sensor values, it always has to react exactly in the same way. The
consequences of determinism are minimal jitter and good testability, as each
behavior can be reproduced.

In TDL value and time determinism and close to zero jittering are guaranteed by the
FLET assumption. The sensors are read and the output values for actuators are
available at specific points in time (based on FLET), that are not influenced by the OS
scheduler or the moments in time when the tasks are actually executed. The
behavior of a TDL program is solely determined by its physical environment and not
by CPU performance, bus load or scheduling strategy.

When using the TTTech TTP tools, value and time determinism is also ensured to
some degree. The transmission of messages and the invocation of tasks are done
with minimal jitter as both are static at runtime and the clock synchronization of the
TTP protocol is accurate. However when sensor readings or actuator updates are
implemented inside tasks, the exact invocation time depends on how long the tasks
actually run in each period. This problem also occurs if the calculation performed by a
task is modified and its execution time changes. In order to ensure determinism, it
would require executing sensor readings and actuator updates in a separate task,
similar to the E machine-like task used by the TDL plugin for the TTP platform
described in this thesis.
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Compositionality

Compositionality is given if the behavior of a software component is independent of
the overall system load and configuration. This means that for example a new
component can be added to a system without influencing the behavior of the original
components. The consequences of compositionality are the extensibility of systems
and the reuse of components.

With TDL each component can be developed independently and compositionality is
guaranteed because of the precise timing model based on FLET. Since the parallel
composition of timed programs does not change the timing behavior of the individual
program, compositionality is guaranteed in TDL.

The TTP tool chain by TTTech also aims at compositionality, but it has certain
restrictions on it. It is required that components that require communication on the
TTP bus or fault tolerance mechanisms are already known when designing the first
level of the two-level design approach, as their communication and fault tolerance
needs to be specified at this point of development. This limits the extensibility of the
system but it does ensure that the components are independent of overall system
load regarding the communication system.

Software standardization

Software standardization is given when the behavior of a software component is
specified independently of its implementation. For example, the hardware, the
operating system, or the bus architecture can be changed without changing the
behavior of the application components. The consequences of software
standardization are upgradeability of hardware, portability of software and the
possibility to move software components between nodes of the system.

TDL separates the functionality and the timing behavior and platform specifications.
It is easy to change the platform without changing the model of the software and its
functionality by changing only the platform annotations. This separation will maintain
the behavior of the whole system although the underlying hardware platform may be
changed or become distributed.

It is clear that the TTP tools cannot provide software standardization to the degree
that TDL provides, simply because the fact that they are tailored to the specific
requirements of the TTP protocol on cluster-level and the TTTech operation system
TTPos and the FT-Com layer on node-level. Only a limited range of hardware targets
is supported and the user has no possibility to extend that range.
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