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Abstract 

The purpose of the thesis is to integrate the Timing Definition Language (TDL) with 
the Time-Triggered Protocol (TTP) for the development of fault-tolerant distributed 
real-time systems. TDL is a language for the definition of real-time systems that aims 
at a separation of the timing and the functionality of real-time applications. TTP is a 
communication protocol based on the ideas of the Time-Triggered Architecture and is 
intended for highly dependable distributed real-time systems developed by TTTech. 
The goal of the integration was to show that it is possible to implement an application 
written in TDL on the TTP platform with special focus on distribution and fault-
tolerance aspects. 

For the purpose of the integration of TDL and the TTP development tools a set of 
tools was designed and implemented. The core of it is a plugin for the existing TDL 
compiler that transforms TDL source code into input for TTP tools in order to finally 
get executable binaries suitable for the TTP hard- and software platform. This 
required a detailed analysis of how to map the TDL constructs to the TTP tools. In 
order to support fault-tolerance and distribution, additional specification was provided 
in a separate file. 

The applicability of the work is proved by means of a simple demo application that 
uses the developed tool chain and incorporates distribution and fault-tolerance 
features. As hardware platform a TTP cluster provided by TTTech was used. The 
results show the feasibility of the ideas behind the TDL plugin and prove that they 
work at least for simple applications. 



 iv 

 Table of Contents 

Acknowledgements ...................................................................ii 

Abstract....................................................................................iii 

Table of Contents .....................................................................iv 

List of Figures...........................................................................vi 

Chapter 1 Thesis Overview ....................................................... 1 

1.1 Introduction and Motivation .....................................................................1 
1.2 Results .................................................................................................1 
1.3 Thesis Structure .....................................................................................2 

Chapter 2 Basics....................................................................... 3 

2.1 Distributed Real-Time Systems.................................................................3 
2.1.1 Real-Time Systems ...........................................................................3 
2.1.2 Distribution......................................................................................4 

2.2 Fault Tolerance ......................................................................................5 
2.3 Giotto and the Timing Definition Language (TDL) ........................................7 

2.3.1 Basic Giotto Concepts........................................................................7 
2.3.2 Timing Definition Language (TDL) .......................................................9 

2.4 Time-Triggered Protocol (TTP)................................................................ 11 
2.4.1 TTP Protocol................................................................................... 11 
2.4.2 TTP Tool Chain by TTTech ................................................................ 14 

Chapter 3 Tool Chain for the Integration of TDL and the  

TTP Tools................................................................................ 23 

3.1 Tool Chain Overview ............................................................................. 23 
3.2 TDL Compiler ....................................................................................... 27 

3.2.1 Calling the Compiler ........................................................................ 27 
3.2.2 Plugin interface .............................................................................. 28 

3.3 TTP Tools ............................................................................................ 28 
3.3.1 TTPplan......................................................................................... 28 
3.3.2 TTPbuild ........................................................................................ 30 

3.4 Fault Tolerance Aspects ......................................................................... 32 
3.5 Mapping of TDL to TTP .......................................................................... 34 

3.5.1 Mapping TDL to TTPplan Objects ....................................................... 39 



 v 

3.5.2 Mapping TDL to TTPbuild Objects ......................................................47 
3.5.3 Glue Code Generation......................................................................53 
3.5.4 Type Mapping.................................................................................57 

3.6 Property File for Specification beyond TDL................................................58 
3.7 Implementation of the TTP TDL Plugin .....................................................61 

3.7.1 Classes..........................................................................................63 
3.7.2 Program Flow .................................................................................68 

Chapter 4 Demo Application ....................................................70 

4.1 Experimental Setup ..............................................................................70 
4.2 Implementation....................................................................................72 

4.2.1 TDL Code.......................................................................................72 
4.2.2 Property File ..................................................................................75 

4.3 Execution ............................................................................................76 
4.3.1 Compiler Invocation ........................................................................76 
4.3.2 TTPplan Script ................................................................................77 
4.3.3 TTPbuild Script ...............................................................................81 
4.3.4 Generated Glue Code ......................................................................86 

Chapter 5 Evaluation ...............................................................88 

5.1 Summary ............................................................................................88 
5.2 Restrictions..........................................................................................90 
5.3 "TDL vs. TTP Tools"...............................................................................90 

Bibliography ............................................................................93 

 

 



 vi 

List of Figures 

Figure 1 Giotto Task Model ...............................................................................8 
Figure 2 Time-division-multiple-access strategy................................................. 11 
Figure 3 Bus Guardian Operation..................................................................... 12 
Figure 4 TTP Cluster Cycle.............................................................................. 13 
Figure 5 TTPplan Screenshot .......................................................................... 15 
Figure 6 TTPplan Schedule Editor Screenshot .................................................... 16 
Figure 7 TTPbuild Screenshot.......................................................................... 17 
Figure 8 TTPbuild Node Schedule Viewer .......................................................... 18 
Figure 9 TTP FT-Com Layer ............................................................................ 19 
Figure 10 Position of TTPos in TTTech's TTP Tool chain ....................................... 20 
Figure 11 TTPload Screenshot......................................................................... 21 
Figure 12 TTPview Screenshot ........................................................................ 22 
Figure 13 Tool Chain Overview........................................................................ 24 
Figure 14 TTPplan Object Model ...................................................................... 29 
Figure 15 TTPbuild Object Model ..................................................................... 31 
Figure 16 FLET is violated .............................................................................. 35 
Figure 17 FLET is maintained with an E machine-like task ................................... 36 
Figure 18 Example with 3 E machine-like tasks ................................................. 36 
Figure 19 Plugin Class Diagram....................................................................... 62 
Figure 20 TTPPlatform Class Diagram............................................................... 63 
Figure 21 TTPMessage Class Diagram .............................................................. 63 
Figure 22 TTPplanScript Class Diagram ............................................................ 64 
Figure 23 TTPbuildScript Class Diagram............................................................ 64 
Figure 24 TTPGlueCode Class Diagram ............................................................. 65 
Figure 25 TTPGlueCodeEMachine Class Diagram ................................................ 65 
Figure 26 TTPProperties Class Diagram ............................................................ 66 
Figure 27 TTPTypeMapping Class Diagram ........................................................ 66 
Figure 28 TTPAuxiliary Class Diagram .............................................................. 66 
Figure 29 Executer Class Diagram ................................................................... 67 
Figure 30 ProcessOutput Class Diagram ........................................................... 67 
Figure 31 Tools Class Diagram ........................................................................ 67 
Figure 32 TTP Development Cluster by TTTech .................................................. 70 
Figure 33 Demo Application Data Flow Diagram................................................. 71 
Figure 34 TTP Powernode LEDs ....................................................................... 72 
Figure 35 Mapping of Subsystem to Hosts in TTPplan ......................................... 80 
Figure 36 Demo Application Cluster Schedule.................................................... 81 
Figure 37 Task Schedule of Node1 of the Demo Application................................. 85 
Figure 38 Demo Application Task Invocation Diagram for Counter1 ...................... 86 
 



Chapter 1 

Thesis Overview 

This chapter contains an overview of the thesis. It includes an introduction to the 
context and problem field and points out the goals and results of the work. Finally 
the overall structure of the thesis is outlined. 

1.1 Introduction and Motivation 

The purpose of the integration of the Timing Definition Language (TDL) with the 
Time-Triggered Protocol (TTP) tools and the case study is to explore the advantages 
and limitations of TDL on top of a specific time-triggered platform. Furthermore, the 
harnessing of platform-specific fault-tolerance in the context of the platform-
independent timing and communication specification in TDL should be evaluated. The 
goal was to seamlessly integrate TDL and TTP by means of a TDL compiler plugin 
that processes TDL modules and interfaces with the tools provided by TTTech for the 
development of TTP applications in order to generate code for the TTP hardware 
platform. The TTP protocol with the hardware and software tools for its development 
is a suitable architecture for this purpose because the protocol already includes 
services such as distributed clock synchronization, membership service and fault 
tolerance mechanisms. The goal was to use these services and tools as much as 
possible. 

In order to demonstrate the distribution and fault-tolerance aspects we use a simple 
demo application which was originally provided by TTTech to demonstrate the 
functioning and usage of their tools. The idea was to recreate the application as a 
TDL program and to use a compiler plugin to generate suitable code for the TTP 
platform. The plugin generates scripts for the two main tools of the TTP tool suite, 
namely TTPplan for cluster-level design and TTPbuild for node-level design. Via these 
scripts the TDL timing definition is transformed into a valid input for the TTTech 
tools. In order to support platform-specific distribution and fault-tolerance aspects 
such as replication and redundancy, a separate annotation file is used to specify 
these properties and some hardware specific variables for the TDL compiler. 

1.2 Results 

It proved to be possible to realize the timing and functionality TDL specifies on the 
TTP platform using the tools TTTech provides. However it turned out that not every 
TDL construct can be mapped to the TTP platform due to limitations of the tools or 
the nature of the underlying TTP communication protocol. 

Another result was that the integration of distribution and fault tolerance aspects in 
TDL works when using a TDL module as unit of distribution and replication. A simple 
demo application showed the feasibility of the suggested specifications and 
mechanisms. 

The thesis also contains a comparison of the development process that points out the 
differences between using the TTP tools by TTTech and the TDL language. 
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1.3 Thesis Structure 

Chapter 2 provides an introduction to the basics that need to be known to be able to 
understand the work presented in the subsequent chapters. Although the first section 
briefly covers the field of distributed real-time systems, probably a more in-depth 
knowledge of it is required to fully understand all aspects presented below. The book 
written by Kopetz [1] is a recommended source to gain such knowledge. 

Chapter 3 presents the design and implementation of the plugin for the integration of 
TDL and the TTP tools. The developed tool chain is explained and the relevant details 
of the process are covered. This includes a description of the programming interface 
of the TTP tools, the plugin interface of the TDL compiler and fault tolerance aspects. 

Chapter 4 presents a case study that relies on the TDL compiler. The simple demo 
application illustrates the capabilities of the plugin especially by using fault tolerance 
mechanisms. The chapter covers the complete TDL-TTP tool chain to generate a 
working application out of TDL modules. 

Finally Chapter 5 summarizes the results of the thesis and discusses the limitations 
and restrictions of the TDL compiler plugin and the tool chain. A comparison of the 
development of distributed real-time applications with the TTP tools and TDL 
concludes the thesis. 
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Chapter 2 

Basics 

The purpose of this chapter is to introduce the reader to a variety of terms and 
technologies that need to be known in order to be able to understand the work 
presented in the subsequent chapters. The aim is on one hand to give an overview 
and on the other hand to explain relevant aspects regarding the thesis with more 
detail. 

2.1 Distributed Real-Time Systems 

A brief overview of what real-time systems are all about is presented below. Typical 
applications are mentioned and ways to classify such systems are presented. A 
special focus is on distributed real-time systems regarding their additional problems 
and advantages they have in comparison to non-distributed ones. 

2.1.1 Real-Time Systems 

A computer system is called a real-time computer system when it is not only required 
that the system produces correct output values based on its inputs, but also to 
perform this calculations in a bounded time interval. The instant when a calculation 
must be finished and a value must be produced is called the deadline.  

A distinction of real-time systems can be made based on whether the deadlines of a 
system are soft or hard. In a soft real-time system the occasional missing of a 
deadline results in degraded quality of service. An example would be a video player 
application. A missed deadline might result in a small playback error that may even 
not be noticed by the user. The more deadlines are missed the poorer the quality of 
the system gets. Opposed to this example a missed deadline in a hard real-time 
system can cause catastrophic effects in systems such as automotive engine control 
or aerospace applications. In the worst case scenario the motor gets damaged or the 
airplane gets into an unstable state and crashes. 

Event-Triggered versus Time-Triggered 

Another very important classification of real-time systems is whether they use an 
event-triggered or time-triggered approach. A trigger is a mechanism that initiates a 
specific activity, e.g. the execution of a computation task or the communication of a 
message. An event-triggered system reacts to events such as the change of a sensor 
value immediately and for example starts the execution of a task that processes the 
value. This is typically realized with the usage of an interrupt associated with the 
event source. In contrast to that in a time-triggered system all activities are initiated 
periodically by the progression of time. Activities such as sensors readings, task 
invocations and communication activities only happen at pre-defined periodic time 
instances. The only interrupt in such a system is the timer interrupt issued by the 
system clock. 
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One obvious advantage of the event-triggered approach is the potentially smaller 
latency between the occurrence of an event and the reaction to it. A change in the 
state of a sensor is detected immediately and not only when it is scheduled to be 
read like in a time-triggered system. But this immediate reaction also turns out to be 
a huge disadvantage when a lot of events (and consequently interrupts) occur almost 
at once. This can cause a missed deadline as the processor of the system has only 
finite computation capacity and therefore cannot handle all interrupts and activities 
that are triggered by them in parallel. The problem is that in hard real-time systems 
it must be proven that deadlines are never missed, even in such a worst-case 
scenario. It is much more straight-forward to prove that for a time-triggered system 
because they are more predictable as every activity is pre-planned. 

2.1.2 Distribution 

A distributed real-time system consists of a number of nodes and a communication 
system. Naturally the latter is of great importance as the communication between 
nodes usually is vital for the distributed system to perform the functions it is 
intended for. The interface between the host computer and the communication 
controller inside a node is called the communication-network interface (CNI). The CNI 
is a way of hiding from the node how the communication actually takes place. It can 
be designed in many different ways. An important design decision is whether the 
communication is controlled by the senders and receivers of messages or if the 
communication system handles the transmission of messages autonomously. The 
first is called the event message concept where the sender sends a message when an 
event occurs and that message is delivered via the communication system to the 
receiver immediately. Here the control when a message is sent is in the sphere of 
control of the host computer. This concept requires a one-to-one synchronization 
between communication partners as otherwise queues will overflow at the receiver or 
the sender may be blocked. In contrast, when using the so-called state message 
concept the communication system is in control concerning the instance of time when 
messages are transmitted. The sender may update the state message independently 
of the receiver and the receiver may read the message many times or not at all. The 
CNI for such a communication system typically is implemented by means of a dual-
ported RAM that decouples the host computers from the communication system. This 
solution avoids that control signals pass the CNI, meaning that a host is not allowed 
to directly control what and when something is transferred on the bus. This leads to a 
looser coupling between the communication partners as one-to-one synchronization 
is not needed.  

Arguments for Distribution 

According to [1] there are four major reasons to choose a distributed solution for 
real-time systems: 

• Composability 

Composability enables developers to develop and test subsystems 
independently and finally compose them to form a distributed system instead of 
a monolithic single system. It must be guaranteed that the properties of every 
subsystem are not invalidated by the system integration. 



 5 

• Scalability 

For a scalable system it is important to avoid having a central bottleneck that 
limits extensibility. By adding new nodes and communication gateways 
additional processing power and communication bandwidth can be added 
almost without limit. Another argument is the cost of silicon. Because the cost 
of manufacturing a chip is proportional approximately to the third power of its 
die area, it pays off to use a larger number of smaller chips despite the fact 
that a distributed solution usually requires more hardware than a centralized 
architecture. 

• Dependability 

In distributed architectures it is easier to establish so-called error-containment 
regions. It is possible to detect an error in a single or multiple nodes and 
protect the rest of the system from corruption. Furthermore in a distributed 
system node replication may be used in order to be able to tolerate failures of 
nodes. 

• Physical Installation 

According to system developers it proved to be intelligent to integrate the hard 
and software that controls a device, in particular a sensor or an actuator with 
the device itself, resulting in increased reliability. A system that uses such 
devices can be viewed as a distributed system.  

2.2 Fault Tolerance 

This section is dedicated to fault tolerance in real-time systems as it represents an 
important aspect in the thesis. We introduce the concept of fault tolerance and the 
various possibilities how to achieve it. The section also covers the detection of errors 
and design strategies for highly dependable systems. 

Fault, Error and Failure 

First it is important to differentiate between the terms fault, error and failure as 
proposed in [3] and [1]. A failure is an event that describes the inability of a system 
to provide the specified or intended service. Failures are almost always consequences 
of an unintended or incorrect internal state of a system which is called an error. The 
cause of an error is called a fault. An example for a fault would be a defect memory 
cell. Such a fault does not necessarily lead to an error, because the system might not 
even use the specific cell. But when it does we have an unintended state of the 
system, and therefore an error, as the data element that is written to memory 
cannot be obtained correctly again. Of course such an error will probably lead to a 
behavior of the system that does not comply with its specifications, for example an 
incorrect calculation or output. This example shows that a fault may not necessarily 
cause an error and an error may not cause a failure. The reverse, however, is true. A 
failure always is the consequence of an error that is caused by a fault. 

Fault Tolerance 

The purpose of fault tolerance is to break the chain of events that lead from fault to 
failure. Faults cannot be completely avoided as it is not possible to build hardware 
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units that never fail. The idea of fault tolerance is to detect errors and mask or repair 
them before the service delivered by the system suffers and therefore a failure 
occurs. So the detection of errors is a key issue in creating a fault tolerant system, 
because undetected errors normally lead to failures.  

There are two basic strategies for error detection: 

• Detection based on a priori knowledge 

A priori knowledge can be knowledge of the code space as used with cyclic 
redundancy checks (CRC), activation patterns of computations or any other 
regularity in the temporal or value domain that can be compared to the actual 
behavior of the system. 

• Detection based on redundant computations 

Redundant computation is possible in various ways: Time redundancy means to 
execute the same software multiple times on the same hardware, whereas 
when applying hardware redundancy it is executed on two independent 
hardware channels. Another possibility is design diversity where different 
software implementations are used on either the same or on diverse hardware. 

After an error is detected, the system has to recover from it and reach an error-free 
state again. In addition the propagation of the error must be avoided. Next is the 
phase of fault treatment. If a transient fault, which is a fault that appears once and 
disappears by itself, occurred, no treatment is necessary. A permanent fault of a 
hardware device will require its repair or replacement. 

Fault-Tolerant Units 

A fault-tolerant unit (FTU) is formed by a collection of nodes. A node is a self-
contained unit that provides some functionality. An FTU is able to mask the failure of 
a node. How many nodes are needed for an FTU depends on the type of failure they 
produce. According to [1] the following three different failure modes are 
distinguished: 

• Fail-silent nodes 

Fail-silence means that a node either produces a correct result or produces no 
result at all. This is the optimal case as then an FTU consists of only two 
identical nodes. Both nodes get the same input and either produce two or one 
correct result when the FTU is operational. To guarantee fail-silence every node 
must be designed in a way so that wrong results are detected and the node 
does not output them. 

• Triple-modular redundancy (TMR) 

In this configuration fail-silence is not provided by the nodes. The failure mode 
when a node might produce a wrong output is called fail-consistent. In order to 
tolerate such a node failure three nodes are necessary. In addition to that a so-
called voter is required that compares the results from the three nodes and 
selects the one that has been computed by the majority, which in our case is 
two out of three nodes.  
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• Byzantine resilient FTU 

To be able to tolerate a Byzantine failure of a node the FTU must consist of at 
least four nodes. A Byzantine or malicious failure occurs when a node shows 
contradictory faces of a failure to each operational node. In order to ensure that 
four nodes are sufficient to tolerate such failures, additional requirements 
concerning communication paths and time synchronization have to be fulfilled. 
Every node needs to be connected to all other nodes of the FTU by two disjoint 
communication paths. Before the malicious node can be detected, at least two 
communication rounds need to be executed where every node sends a 
broadcast message. In addition, the clocks of all nodes need to be synchronized 
with a known precision. 

Those three FTU scenarios show that it pays off to design nodes to be fail-silent or at 
least fail-consistent, as this will be cheaper than having such a high number of 
replicated nodes in most cases. 

Systematic versus Application-Specific Fault Tolerance 

There are two basic options in making a system fault tolerant. The systematic 
approach implements fault tolerance mechanisms transparent to the application 
software. This means that the application code does not need to be modified and the 
application also is not aware that any fault-tolerance mechanisms are employed. 
Typically this is realized by the replication of hardware units that run the original 
application redundantly. The advantage of this approach is that those mechanisms 
can be developed and tested independently from the application code and that it 
avoids making the application more complex and therefore more prone to errors. The 
major downside is that typically more hardware is needed for its implementation. 
Application-specific fault tolerance requires modifying the application by integrating 
error detection and fault tolerance functions on the application level. This results in 
lower hardware costs at the expense of higher design and testing efforts in 
application development. Since both approaches have their advantages often both 
are used together in practice. 

2.3 Giotto and the Timing Definition Language (TDL) 

In this section Giotto is introduced as a language for embedded programming. Basic 
Giotto concepts, in particular the fixed logical execution time (FLET) and the E 
machine are discussed. The Timing Definition Language (TDL) that was used in the 
realm of this thesis is conceptually based on Giotto and was developed to provide 
improved syntax and programming tools. 

2.3.1 Basic Giotto Concepts 

Giotto provides a programmer's abstraction for the development of hard real-time 
systems. It follows the time-triggered approach and is no real programming language 
but rather a tool that lets the programmer specify the timing and communication 
behavior of an application. One goal of Giotto is to contribute to a better 
modularization of control software by separating the timing and communication 
specification from the functionality implementation. Furthermore, the timing and 
communication specification are separated from physical realization concerns such as 



 8 

hardware requirements and scheduling. This allows the developer to specify the 
timing and communication behavior in a platform-independent way. According to [4] 
the Giotto-based development of control systems is performed in three stages: 

• Control design 

This step consists of typical design efforts required for real-time control 
systems, in particular the plant modeling and control law definition.  

• Giotto program 

Based on the previous step the timing and communication behavior of the 
application is modeled. This most importantly includes the specification of 
periodic software tasks and mode switches. A mode in Giotto is a collection of 
concurrently executed periodic tasks that represent an operational mode or 
state of a real-time application. A mode switch is a condition which triggers the 
change of the current mode. 

• Code for a specific real-time platform 

When the target platform is fixed, the application is mapped to a specific 
hardware and operating system. Also a computation schedule for the tasks on a 
node and for communication must be calculated. It might happen that the 
outcome of this step is that the desired target platform does not satisfy the 
requirements of the application. 

Synchronous and Asynchronous Language Constructs 

The Giotto language contains synchronous as well as asynchronous constructs. Apart 
from task and modes mentioned above, Giotto uses another important abstraction 
called drivers. Drivers contain code for sensors and actuators which interact with the 
physical world. The Giotto abstraction assumes that a driver is executed in logically 
zero time and therefore is a synchronous construct. A task however consumes a non-
negligible amount of CPU time concerning the Giotto programming model, thus being 
an asynchronous construct. It is not allowed to set actuators or to read sensors 
within task code, as this would be a violation of the programming model. 

 

Figure 1 Giotto Task Model 

Figure 1 illustrates the task model used in Giotto. Logically a task is considered active 
during its whole period, although typically it only takes a fraction of that time to 
actually execute it. Physically, tasks can be executed at any time by the scheduler of 
the system and also might be preempted as shown in the figure above, as long as 
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their execution is finished at the end of their execution interval. This interval is as 
long as the period of the task and is called the fixed logical execution time (FLET) or 
also LET like in the figure above. Drivers are executed at the beginning of FLET in 
logically zero time, but physically they do consume a rather small amount of CPU 
time, indicated by the green block in the figure.  

Tasks communicate with other tasks and with sensors and actuators only via so-
called ports. Therefore ports can be seen as an interface that connects all entities in 
the Giotto programming language. Ports are read and updated in a strictly periodic 
and time-triggered way only at the beginning and end of the fixed logical execution 
time of a task. 

The consequence of the Giotto programming abstraction, especially of the FLET 
concept, is a platform-independent description of the timing behavior of real-time 
applications. 

E Machine 

The embedded machine implements the Giotto timing on a specific hardware 
platform. It executes drivers and passes the tasks to the scheduler. It is an 
interpreter for the so-called embedded code (E code) that is generated by the Giotto 
compiler and contains the timing specification of the Giotto program. Because of the 
simple instruction set of the E machine it is quite easy to port the E machine to 
different platforms. The instruction set contains among others the following three 
instructions [2]: 

• Call driver instruction 

This instruction executes a driver. It is blocked which means that the E-Machine 
waits until it is finished before it continues to execute the next instruction. 

• Schedule task instruction 

The schedule instruction hands a task to the scheduler of the operating system. 
The E machine does not schedule the task but just requests that it is scheduled 
when CPU time is available. The exact time of execution is not controlled by the 
E machine but by the scheduler of the operating system and the scheduling 
algorithm that is actually employed. So this may result in different patterns of 
task invocation on different platforms, but as long as every task finishes inside 
its FLET interval, the timing behavior of the application remains unchanged. It 
might happen that for various reasons this is not possible and a deadline 
violation occurs. This can be avoided by a compiler that checks for time safety 
on the platform concerned. 

• Future instruction 

The future instruction marks a block of E code for later execution.  

An in-depth description of Giotto and the E-Machine can be found in [2] and [4]. 

2.3.2 Timing Definition Language (TDL) 

TDL, as described in [9], is based on the Giotto concepts, but offers a more 
streamlined syntax. Above all, TDL adds the module construct. 
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A module packages multiple modes with their tasks, sensors and actuators together. 
It enables the decomposition of a real-time application into smaller software 
components and – as we will see later – simplifies distribution and the introduction of 
fault tolerance. 

Sample Module 

The following example shows a TDL module that realizes a simple light controller that 
controls a light with respect to a brightness value from a sensor. 

module lightController { 
 
  sensor 
    int brightness uses getBrightness; 
 
  actuator 
    int light uses setLight; 
 
  public task calc [100us] { 

    input 
       int brightnessValue; 

    output 
       int lightValue := 0; 

    uses calcImpl(brightnessValue, lightValue); 

  } 
 
  start mode controlLight [4000us] { 

    task 
      [1] calc(brightness); 

    actuator 
      [1] light := calc.lightValue; 

  } 

} 

The code starts with a definition of all sensors and actuators that will later be used. 
The type int is an internal type of TDL, but there is also the possibility to define 
custom types. A sensor or actuator declaration consists of an identifier and a name of 
a function that implements the functionality. This function can be provided in any 
programming language. Next comes a task definition including a specification of the 
worst-case execution time (WCET), which is 100 microseconds here, the tasks input 
and output ports and again a function calcImpl that implements the functionality of 
the task. Finally a mode is defined with its period, which is 4000 microseconds here, 
and invocations for tasks and actuators. Note that the sensor value is passed as a 
parameter to the task as it has exactly one input port. The number in brackets 
indicates the frequency of a task or actuator, i.e. how often it is invoked in one 
period. The fixed logical execution time (FLET) of a task or an actuator is defined by 
the mode period divided by the task or actuator frequency. 
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A more detailed discussion of this example, especially concerning the integration with 
functionality code, can be found in 3.5.3.  

2.4 Time-Triggered Protocol (TTP) 

An introduction to the Time-Triggered Protocol (TTP) developed at the TU Vienna is 
given in this section. TTP is designed for fault-tolerant communication between nodes 
in a distributed real-time system and provides services such as time synchronization 
and membership service. Apart from explaining the protocol the section also presents 
the tools and tool chain that are provided by TTTech for the development of 
applications with TTP. 

2.4.1 TTP Protocol 

TTP is – as the name implies – a communication protocol that works in a time-
triggered fashion. There are two different variants of TTP: TTP/A is a so-called field 
bus that is designed as a low-cost protocol for the connection of intelligent sensors 
and actuators to a node. TTP/C is more complex and provides additional services 
such as redundancy management and a more sophisticated membership service. It is 
intended for the fault-tolerant connection of nodes of a distributed real-time system. 
In this thesis the term TTP always refers to the TTP/C protocol. 

TTP is a time-division-multiple-access (TDMA) protocol. TDMA is a commonly used 
access strategy for communication busses. Time-division-multiple-access means that 
a common media is shared by giving exclusive access to the media to one sender at 
a time as illustrated in Figure 2. When using the Ethernet protocol for example, it is 

not defined when a specific sender is allowed to access the media at runtime and 
therefore it can happen that multiple senders send at the same time which results in 
distorted und unusable signals. In such a scenario these collisions must be detected 
and avoided, which is handled by the carrier-sense multiple access with collision 
detection (CSMA/CD) strategy of the Ethernet protocol. In TTP such mechanisms are 
not necessary since the assignment of sending slots for each node is done at design 
time. This seems very impractical at first and indeed limits the possibilities of the 
protocol, but when taking into account that typical distributed real-time systems are 

send

receive

receive

send

receive

receive

receive

receive

send

t1

t1

t1

t2

t2

t2

t3

t3

t3

Node A

Node B

Node C

send

receive

receive

send

receive

receive

receive

receive

send

t1

t1

t1

t2

t2

t2

t3

t3

t3

Node A

Node B

Node C

 

Figure 2 Time-division-multiple-access strategy 
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not required to be very flexible and mostly perform periodic tasks, this limitation is 
feasible. At the expense of flexibility TTP delivers guaranteed bandwidth and features 
for high dependability such as bus guardians. A so-called bus guardian is an 
independent hardware device that allows access to the bus for the communication 
controller of a node only at the exact interval it is allowed to send according to the 
bus schedule, as illustrated in Figure 3. It protects the bus from "babbling idiot" 
failures where a node keeps "talking" outside its sending slot and prevents other 
nodes from communicating. 

Faulty node

Bus Guardian

Bus signal
 

Figure 3 Bus Guardian Operation 

The TTP protocol uses a number of constructs und concepts in order to realize fast 
and reliable real-time communication between nodes. In the following those entities 
are described as well as the relations between them. 

Frame 

A frame carries 1 to 240 bytes of user data in addition to protocol overhead such as 
header and CRC information. The TTP protocol is not aware of what kind of data or 
messages are contained in a frame. The contents of a frame have to be specified on 
application level consistently throughout the system. Frames are delimited by inter 
frame gaps that are needed by the TTP controller in order to distinguish between 
frames and to perform calculations within the gap duration. 

Slot 

A frame is transmitted within a slot. A slot is a time interval in which only the node to 
which the slot is assigned is allowed to send data on the TTP bus. The TTP bus always 
provides two independent lines for communication which are called channels. The 
frames sent on both channels do not need to be the same. A frame can either be 
transmitted on only one channel to maximize throughput or on both to maximize 
dependability by redundancy. Typically every slot is assigned to a single node, but 
there also exists the possibility to assign a slot to a group of nodes, which is called 
multiplexing. 

Every node is required to send a frame at the beginning of its slot. The exact 
instance of this transmission is used to calculate the clock difference of every node. 
This difference is determined by every node of the cluster and transmitted to the 
other nodes in its sending slot. Every node continuously corrects its clock on basis of 
this information. The fact that every node is required to send a frame inside its slot is 
also used to determine whether a node is still working properly, which is information 
needed to provide the membership service. Again, every node sends its view of the 
current state of all other nodes and so a consistent view of the membership in the 
cluster is established. These two examples show that the strict and static nature of 
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the protocol has clear advantages in reducing the required overhead for services such 
as clock synchronization and membership service. 

TDMA Round 

A TDMA round is a sequence of multiple slots which might differ in their length. It is 
important to note that the length of the TDMA round and the slots it consists of are 
statically defined at design time and cannot be changed at runtime. As the TDMA 
round is repeated over and over again, it defines the basic communication pattern of 
the protocol and consequently the share of the total transmission time each node 
gets. The reason for this restriction with respect to flexibility is to keep the bus 
guardian as simple as possible. 

Cluster Cycle 

A TTP cluster cycle consists of multiple TDMA rounds as indicated in Figure 4. It can 
be seen as top-level construct that represents a cluster mode and is repeated all the 
time. As can be seen in the figure, the frames that are sent in a TDMA round and 
consequently the messages contained in them can differ throughout the cluster cycle. 

As the TTP protocol is not aware of messages inside frames the TDMA slots differ 
from each other regarding their length. When multiplexing is used, a slot is shared by 
a collection of nodes. In this case it is required that every slot is assigned to a node 
and every node sends periodically. So when for example three nodes share a slot in a 
cluster cycle that consists of four TDMA rounds, a valid assignment would be if one 
node gets slot 1 and 3, one node gets slot 2 and one node gets slot 4.  

Slot A Other slots A

m1,m6,m8

Other slots A Other slots A Other slots

Cluster Cycle

m1,m2,m7

m1,m2,m3

m1,m6,m8

m1,m2,m4

m1,m2,m4

m1,m5,m6

m1,m5,m6

TDMA round 1

Ch A

Ch B

 

Figure 4 TTP Cluster Cycle 

MEDL 

All the information of "who sends what at what time" is stored in a data structure 
called the message descriptor list (MEDL). It can be distinguished between an 
abstract MEDL, which represents a system-wide model of the communication pattern 
of the bus, and a personalized MEDL derived from it that is unique for every node of 
the cluster. The latter contains node-local information, such as the serial number of 
the corresponding node, in addition to the bus schedule including information on the 
TDMA round, cluster cycle and different cluster modes. The personalized MEDL is 
stored in the memory of the TTP communication controller of each node which 
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handles the transmission of messages on the bus independently from the host 
computer. 

2.4.2 TTP Tool Chain by TTTech 

TTTech provides two main tools for application development for their hardware in 
order to realize the so-called two-level design approach which consists of the cluster 
and the node level design. The idea is that the system integrator knows about all 
functions and therefore about the bus messages that are needed for them. The 
cluster design specifies the interfaces between the nodes and the cluster in both the 
value and time domain. After this is done, the outcome can be passed on to various 
sub-manufacturers which design specific nodes of the cluster. The composability of 
the nodes is guaranteed because the bus schedule is already generated in the first 
design level. The reason for having those two levels in the design of the system is 
the development process and requirements that are found in the automotive 
industry, especially between car manufacturers and their suppliers. Typically, a car 
manufacturer plays the role of a system integrator by hiring different component 
suppliers to deliver certain subsystems. The clear separation of concerns inherent to 
the two-level design approach leads to defined responsibilities of all parties involved 
while reducing the risk of integration. Another important benefit is the possibility for 
the subsystem manufacturers to hide the information of how the components are 
actually implemented, as the system integrator does not need to know this for a 
successful integration and operation of the whole system. 

According to TTTech the following distinct steps have to be taken in order to design a 
distributed and fault tolerant real-time application: 

• Application design (including control algorithms) 

• Communication and fault tolerance requirements 

• TTP/C cluster schedule design 

• Implementation 

• Test/verification 

In the following the main tools of the TTP tool suite for the development of 
applications based on the TTP protocol are described. 

TTPplan 

TTPplan is the cluster-level development tool for designing the bus schedule of the 
cluster. Every message which is sent from every node has to be specified and an 
automatic scheduler then generates a bus schedule for these requirements. Also fault 
tolerance properties such as replication, reintegration, and redundancy must be 
specified at this development stage. The outcome of TTPplan is a cluster database 
with a cluster schedule and a MEDL (message descriptor list) for the TTP chip of each 
node which contains the cluster schedule. The MEDL specifies exactly when a node is 
allowed to send which message and when messages from the other nodes can be 
received, so every MEDL contains the cluster schedule from the view of a specific 
node. 
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Figure 5 TTPplan Screenshot 

TTPplan uses an object model to represent the TTP cluster and all objects it consists 
of such as hosts and messages. The graphical user interface lets the user create and 
modify this model by either using a "Step-by-Step Guide" that guides the user 
through the process to create an application in about ten steps. Another possibility is 
to directly modify the object model in the "Pilot" view. Figure 5 illustrates this view 
with a screenshot of the user interface with the object model in the background and 
a dialog for modifying objects in the foreground. Below the menu and the toolbar 
there are a number of tabs that allow switching between various views, including the 
guide mentioned above, the pilot view and a view where errors are displayed. The 
window in the foreground displays the required and optional attributes for the 
"Cluster" object. The current value of the attributes is displayed and can be changed. 
The bottom of the window contains help on the selected attribute, whereas on the 
right part error information is displayed in case improper input is detected. At the 
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very bottom of the main window status information is displayed on the current 
operation the tool executes. 

 

Figure 6 TTPplan Schedule Editor Screenshot 

After the object model is checked for validity and consistency, the cluster schedule 
generation can be invoked. As Figure 6 illustrates the schedule and all messages it 
contains can be viewed with a lot of detailed information. The cluster schedule is 
visualized by means of colored blocks that symbolize messages. The area marked 
with the darker yellow (Node1_Slot in Round 1) illustrates what a host sends in its 
slot. The selected slot is magnified below in the area titled "Selected Round-Slot". It 
is possible to select a single message and view detailed information on it such as its 
name and period at the bottom of the window. The interface also offers the user the 
ability to alter the schedule by drag and drop. As a final step the MEDLs for every 
host of the cluster is generated and written to file. 
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TTPbuild 

TTPbuild requires a cluster database created by TTPplan that contains the object 
model and also the cluster schedule before it can be used to design a single node of 
the cluster. With TTPbuild the user can specify every periodic task that should run on 
a node and the messages it consumes and produces. The messages that are sent by 
a node on the bus were already specified and cannot be changed in this development 
stage following the two-level design approach. For every task a so-called time budget 
must be given, which consists of the worst-case execution time (WCET) of a task plus 
some additional overhead needed by the operating system. Just like in TTPplan a 
"Step-by-Step Guide" is available to be guided through the creation of a valid host 
object model. Figure 7 shows the user interface of TTPbuild, viewing the object model 
of a node. The interface is very similar to that of TTPplan, which was described 
above. The object model with the attributes of the objects can be viewed and edited 
in the exact same way. 

 

Figure 7 TTPbuild Screenshot 

After a valid and consistent object model was created a task schedule can be 
generated. On basis of the cluster schedule, the time budget of the tasks and 
information on the target hardware TTPbuild tries to create a feasible task schedule 
for the node. As illustrated in Figure 8 the task schedule can be viewed to see at 
what exact time every task is executed. The numbers before the name of the task 
chains indicate the time of invocation in micro seconds relative to the beginning of 
the application mode period. TTPbuild combines a number of tasks to a task chain in 
order to reduce the overhead caused by switching between tasks. When expanding a 
task chain by clicking on the black triangle, all tasks of which the chain consist are 
displayed together with information on their time budget and deadline. By further 
expanding all messages a task sends on cluster and node level are shown. TTPbuild 
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displays all tasks that will actually be executed on a node, including the ones the tool 
adds automatically to execute functions that perform the transmission of messages 
on the bus and clock synchronization. 

 

Figure 8 TTPbuild Node Schedule Viewer 

TTPbuild generates a static schedule table with all user defined tasks and with 
system tasks used for time synchronization and the FT-Com layer. The fault-tolerant 
communication layer (FT-Com) is automatically generated C code for handling the 
reception and transmission of typically redundant or replicated messages. Another 
outcome of the tool is an OS configuration file for the TTTech operating system TTPos 
in which the schedule is specified. All the developer has to do then to get a working 
binary for the target platform is to provide the task functionality code in C. 
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Figure 9 TTP FT-Com Layer 

An important component in the TTTech tool chain is the fault-tolerant communication 
layer FT-Com. As Figure 9 illustrates it acts as a layer and interface between the 
communication layer and the application layer. The communication layer consists of 
frames and messages on the physical TTP bus and is determined by the MEDLs of the 
participating hosts with their TTP controllers. It can be seen that for example 
message m1 that is consumed by the task t1 is transmitted four times on the bus. 
This is due to redundant transmissions on both TTP channels and because it is also 
replicated, which means it is produced by two hosts. The FT-Com layer merges those 
four versions of the message into one that is made available to the task that 
consumes the message. This merging is determined by an algorithm called the 
replica-deterministic agreement (RDA) algorithm. Depending on the application the 
FT-Com layer might calculate the average of the two replicated copies or just take 
any valid instance of it. Furthermore the FT-Com layer enables the application to 
detect errors by providing a message status for every message that is an integer 
value that indicates how many instances of the message were received correctly. A 
detailed description of how application code interfaces with the FT-Com layer can be 
found in 3.5.3. 

The FT-Com layer is implemented as automatically generated C code that is created 
by TTPbuild. It therefore is specifically tailored to the actual application and the 
messages, tasks and RDA algorithms it uses. 
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TTPos 

TTPos is an operating system for real-time systems that is provided by TTTech for 
their tool chain [5]. It is compliant with the OSEKtime operating system specification 
and is strictly time-triggered. A notable aspect is that the TTPos operating system 
has no mechanism to provide scheduling at runtime. The task activation table is 
planned and scheduled offline by TTPbuild and TTPos just executes that table 
periodically. The table must contain a schedule that ensures that no resource sharing 
conflicts or deadline violations occur. 

 

Figure 10 Position of TTPos in TTTech's TTP Tool chain 

TTPos is tightly integrated in the TTP tool chain, as Figure 10 illustrates. It depends 
on TTPbuild that outputs a configuration file that contains the task schedule. This 
schedule not only contains the application tasks but also a task for time 
synchronization and tasks that execute the FT-Com layer. TTPos is also tightly 
coupled with the FT-Com layer that uses TTPos to access the hardware and provides 
the application with an interface to access the TTP bus. 

TTPload 

TTPload is the download tool in the TTTech TTP tool suite. It is used to download the 
MEDLs to the communication controller and the application binary files to the 
program flash memory of each host computer. All this is done through a special 
hardware box called the TTP monitoring node that acts as a gateway between 
standard Ethernet and the TTP bus and protocol. The monitoring node is connected to 
the TTP bus as a passive device that listens on the bus but does not send anything. 
All MEDLs and application files can be downloaded conveniently in one step to all 
nodes without the need to plug a cable into each of them. 

The screenshot in Figure 11 shows the main screen of TTPload. All nodes are listed 
and it can be selected if the MEDL and application should be downloaded. The 
monitoring node is listed here as well, as it also needs a correct MEDL for the 



 21 

 

Figure 11 TTPload Screenshot 

application it should monitor to know when which messages are sent by the nodes. 
TTPload also provides a function for querying the nodes to check if they already have 
a current version of the MEDL and application. 

TTPview 

TTPview enables the user to display all data that is transferred over the TTP bus. It 
also uses the monitoring node to access the TTP bus via Ethernet like TTPload. 
TTPview needs a cluster database created by TTPplan because it needs the 
information of what messages are transferred at what time. Figure 12 shows its 
graphical user interface. On the left all entities of the loaded cluster database that 
should be monitored can be selected and dragged to the right window. Among the 
selectable entities the actual values of the bus messages along with status 
information on them and global status values such as the current clock or the 
membership vector. There are various different ways to view the values, from simply 
displaying the numerical value to a gauge view and graphs to see the change of a 
value over time. After this step online monitoring can be started with the first button 
from the left at the bottom of the window and all values will be updated in real time. 
There is also the possibility to record everything that is transferred on the bus for a 
later offline analysis by pressing the record button indicated by a red dot on it. The 
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Figure 12 TTPview Screenshot 

other buttons at the bottom are used to store and load recorded data and to 
playback them forwards, backwards or step-by-step. 

Although TTPview is limited to viewing bus traffic and cannot be used to access any 
values or variables inside the node's CPU, it is a valuable tool for debugging and 
development purposes. 
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Chapter 3 

Tool Chain for the Integration of TDL and the  

TTP Tools 

3.1 Tool Chain Overview  

An overview of the complete tool chain for developing TDL programs for the TTP 
hardware is presented below. All entities in the tool chain are described together with 
their order and connections between each other. 

Figure 13 gives an overview of the tool chain. In the following all entities of it are 
summarized. A more detailed description of the key items can be found in the next 
sections.  

TDL Code 

This is a collection of files that contain the TDL program of the application. In the 
current implementation of the TDL compiler a separate file for each module must be 
used. Typically the modules are connected by public statements on one hand to 
indicate tasks and sensors that are available to other modules and import statements 
on the other hand that make these public construct accessible inside another 
modules. The additional platform specification has to be provided in a separate 
property file. 

Property File 

Our TDL compiler plugin needs specifications in addition to the TDL program. In order 
to be able to provide these to the plugin an additional file is used. It is a standard 
Java property file with name-value pairs. The information that must be specified 
consists of information on how the TDL program should be distributed among nodes, 
fault-tolerance specification and platform-specific properties that are specific to the 
TTTech hard- and software. In addition to that the file also contains a number of 
paths to the programs that the plugin needs to call such as the binaries of the TTP 
tools. 

TDL Compiler 

The TDL code is compiled using the existing TDL compiler. The main function of the 
compiler is to parse the syntax of the modules and to generate E code for each 
module. The TTP plugin only uses the former and does not need the generated E 
code. It only uses the compiler to get access to the modules in an appropriate data 
structure via the compiler's plugin interface. The reason for bypassing the use of E 
code is the static nature of the TTP platform. With the TTP tools every task is 
statically scheduled at design time and this schedule cannot be changed at runtime. 
Thus, the interpretation of E code at runtime would not make sense. The execution of 
TDL drivers for reading sensors and updating actuators is managed by the 
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Figure 13 Tool Chain Overview 

introduction of a periodically scheduled E machine-like task that is generated by the 
plugin. 

TDL Compiler Plugin 

The core element of the tool chain is the TTP plugin for the TDL compiler. It accesses 
the parsed modules from the compiler and controls the transformation of them into a 
TTP application. To accomplish that it has to generate scripts for the TTP tools and 
execute them. Furthermore it has to generate glue code to link the functionality code 
of the tasks and drivers to the operating system TTPos and the FT-Com layer 
provided by TTTech. This glue code does also periodically execute an E machine-like 
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task that handles the execution of drivers for reading sensors and updating 
actuators. 

TTPplan Script 

The plugin generates a file that contains a script for the TTP tool TTPplan. It contains 
commands that realize the timing and functionality that the TDL modules specify on 
cluster level. This includes communication between nodes of the cluster, the 
distribution of modules among nodes and fault-tolerance properties. 

TTPplan 

TTPplan is the cluster design tool of the TTP tool suite and the first tool that is 
employed by the plugin. It is used to design a global schedule for communication 
between nodes. It is executed with a script as input that controls the generation of a 
suitable schedule that corresponds to the TDL modules and their distribution among 
the individual nodes. The communication schedule is stored in a cluster database file 
and for each node a separate message descriptor list (MEDL) is generated that 
contains the bus schedule. 

MEDLs 

For each node a message descriptor list (MEDL) is generated by TTPplan. It contains 
the relevant information for each node which is when it is allowed to send what data 
and when it can receive data from other nodes. The MEDL file must be downloaded to 
the TTP communication controller of each node which completely controls the 
communication behavior of it. For the downloading process the TTP tool TTPload is 
used. 

Cluster Database 

The cluster database file created by TTPplan contains all information that was 
specified in TTPbuild by the script for it and in addition the generated cluster 
schedule. 

TTPbuild Script 

This script is a file created by the plugin for every node. It contains commands that 
realize the timing and functionality of the TDL modules on node level. This includes 
the implementation of the E machine-like task and the execution of sensors, 
actuators and tasks. 

TTPbuild 

TTPbuild is used for node design. It relies on the cluster database with the generated 
communication schedule. The plugin creates one script per node and then invokes 
TTPbuild for each of them. The script contains commands that most importantly 
create all tasks that are supposed to run on every node. These tasks consist of tasks 
that are defined in TDL, the E machine-like tasks that are generated by the plugin 
and tasks that TTPbuild adds to perform time synchronization and execute the FT-
Com layer that handles the sending and receiving of messages on the bus. TTPbuild 
creates a task schedule and the FT-Com layer as output. 
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TTPos Configuration Files and FT-Com layer 

These are a collection of files that TTPbuild creates for each node. The TTPos 
configuration files are C code that contain a table that represents the complete task 
schedule of the node. It is intended to be used with TTTech's operating system 
TTPos. The FT-com layer is also a collection of C files generated by TTPbuild. It 
provides the application with the required functions to send and receive messages on 
the bus. It handles the fault-tolerant transmission and reception of messages 
according to the properties specified in TTPplan and TTPbuild. 

Glue Code and E Machine-like task 

These files are all created by the TDL compiler plugin for every node. The glue code 
maps the functionality code to the operating system and the FT-Com layer. It also 
contains the E machine-like task that has two purposes: One is the calling of drivers 
for sensors and actuators and the other is the relaying of messages in order to 
maintain the FLET property of TDL. 

Functionality Code 

The functionality code must be provided for each module and contains the 
implementations of all tasks and drivers that are used in the TDL code. It is not 
specific to the TTP plugin and is intended to work with other platforms using the C 
language as well. The naming convention for the functionality code for an example 
module myModule.tdl is myModule.c for the C code containing the task and driver 
code and myModule.h for the corresponding header file. Inside the functionality code 
other header files can be referenced with an include statement in order to be able to 
use for example one file pair drivers.h and drivers.c with driver code for sensors 
and actuators by multiple modules throughout the whole application. 

C Compiler 

The C compiler compiles and links the TTPos code with its configuration files, the FT-
Com layer, the glue code and the functionality code and eventually creates a binary 
file that is ready to be downloaded to the target platform. As compiler the Diab 
C/C++ Compiler for PowerPC by Windriver is used, as it is recommended by TTTech 
and also shipped with their development cluster hardware. 

Hardware 

As target hardware everything that is supported by the TTP tools can be used. A 
typical hardware setup consists of a collection of TTP nodes together with a special 
monitoring node that acts as a gateway between standard Ethernet and the TTP 
protocol. This node can be used to monitor all data that is transferred on the bus and 
to download MEDL and application files to the individual nodes. Monitoring can be 
accomplished by TTPview, whereas downloading of code and MEDLs can be done by 
TTPload. 
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3.2 TDL Compiler 

This section is dedicated to the current implementation of the TDL Compiler that has 
been used for this thesis. Its functionality is described together with its plugin 
interface. 

The version of the TDL Compiler used for the thesis supports multiple modules to be 
combined with the use of the import and public keywords. Functionality such as the 
output ports of tasks and sensors can be made available to other modules by using 
the public keyword. This is the only distribution aspect the compiler supports to 
date. It deliberately does not handle the platform specific assignment of modules to 
nodes or any kind of fault tolerance functionality. 

3.2.1 Calling the Compiler 

The compiler is invoked at the command line as follows: 

java emcore.tools.tdlc.Compiler [options] [TDL files] 

The following options are available: 

-d <destination directory> 

This option specifies the directory to store the generated files. Typically those are E 
code files for every module. This directory is also passed on to a plugin which 
typically also places generated files in this directory. 

-java 

This option specifies to use Java as target platform. 

-ansic 

This option specifies to use ansi-C as target platform. 

-cpp 

This option specifies to use C++ as target platform. 

-platform <class name> 

This option lets the user specify any Java class as a platform plugin. This is how the 
TTP plugin presented in this thesis is integrated. 

The compiler always produces one E code file for every TDL module no matter what 
target platform is specified. For every platform an individual collection of additional 
files is generated that typically is glue code for mapping the functionality code to the 
specific properties of the target platform. In the case of the TTP plugin additional 
software – the TTP tool chain – is employed to generate those files and to eventually 
produce a working system running TDL code. 
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3.2.2 Plugin interface 

A platform plugin is realized by a Java class that implements the Platform interface. 
The only method in this interface is the emitCode method which must be 
implemented like this: 

public void emitCode(String destDir, Module module) throws Exception 

This method is called for every module the compiler processes. It has the destination 
directory that was provided at the command line for the compiler and the module as 
parameters. The module object contains the abstract syntax tree of the TDL module 
that was parsed by the compiler. A plugin typically analyzes the module, generates 
files and puts them in the destination directory. 

3.3 TTP Tools 

This section explains the relevant TTP tools for the integration with TDL in detail, 
focusing on their programming interface and the object model that the main tools 
TTPplan and TTPbuild use. All basic steps a user has to go through to get a correct 
model and therefore a working TTP application are explained briefly. Furthermore the 
script language of the tools is demonstrated with simple examples. 

Both TTPplan and TTPbuild have two modes of operation: They can either be started 
in an interactive mode with a graphical user interface or in batch mode without any 
interactive interface and textual output only. With a few exceptions all functions are 
available in both modes. 

Both applications also share their basic architecture of using an object model for the 
internal representation of the data and also as part of their user interface. A TTP 
cluster in TTPplan and a TTP node in TTPbuild are composed of a number of objects 
with relations between them. Every object also has a number of mandatory and 
optional attributes. 

3.3.1 TTPplan 

Figure 14 shows the object model of TTPplan. The main object of the model is the 
cluster object. It represents the whole system and has attributes that specify system-
wide properties. A cluster consists of multiple hosts that all must be given a name. 
Here the number of hosts in the cluster is defined and for every host the developer 
later has to create a host object model with TTPbuild. A host in the TTP tools is a 
node of the network that has computational and communicating capabilities. Another 
key object is the subsystem. It is the unit of distribution and replication and is used 
for the packaging of messages. Consequently a subsystem is linked to a number of 
messages. A message represents a message on the TTP bus. In this development 
stage it is only defined which messages a subsystem sends, not which messages it 
receives. As the reception of messages does not influence the cluster schedule, 
because of the broadcast nature of the bus, it is sufficient to specify reception later 
on node-level. Subsystems are also linked to hosts and by this it is defined what 
functionality is executed on which host and if and how subsystems are replicated, as 
it is possible to assign a subsystem to multiple hosts. All this associations are later 
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Figure 14 TTPplan Object Model 

also available when designing a single host with TTPbuild and cannot be changed 
then. 

A detailed description of all relevant objects in TTPplan for the integration with TDL 
can be found in 3.5.1, whereas a complete specification and definition is contained in 
[6]. 

Sample Script 

The scripting language of TTPplan and also TTPbuild consist of a number of 
commands that (1) control the tool itself, typically with the 
TTA.Application_Command.run command that for example performs file handling 
commands or initiates the generation of schedules, or (2) are used to create and 
modify the object model of the tools. The commands are followed by a number of 
parameters in parentheses. Strings need to be enclosed in single quotes. Normally 
the parameters need to be formatted in the required type for the parameter, i.e. 
strings have to be quoted but integer values are unquoted. However, there is a so-
called raw mode, indicated by the parameter raw=1, that requires every parameter to 
be formatted as a string. This mode is especially needed for attributes of objects that 
only have a defined set of valid values. 

The following lines of code illustrate what a script for TTPplan that creates an object 
model looks like. It is only an excerpt that shows the beginning and end of the script 
and as an example the creation and linking of a subsystem and a message. 

TTA.Application_Command.run ('File.New', 'myCluster') 

TTA.Subsystem.define ('mySubsystem', reintegration_type = 
'Reinit_Reintegration', raw=1) 



 30 

TTA.Message.define ('myMessage', agreement = 'RD_1_valid', init_value = 
'1', raw=1) 

TTA.Subsystem_sends_Message.add (TTA.Subsystem.instance ('mySubsystem'), 
TTA.Message.instance ('myMessage')) 

[...] 

TTA.Application_Command.run('Schedule.Make new schedule') 

TTA.Application_Command.run('Schedule.Make MEDLs') 

TTA.Application_Command.run('File.Save cluster as ...', 'myCluster.cdb') 

The first line creates a new cluster database with the name myCluster. Then a 
number of statements follow that define every object and link in the object model 
including their required and optional attributes. As an example the above statements 
create a subsystem mySubsystem and a message myMessage, together with a link 
that defines that the message is sent by the subsystem. A complete list of commands 
used by the plugin can be found in 3.5.1. The last lines tell TTPplan to create a 
cluster schedule and to make the message descriptor lists (MEDLs) for each node. 
Finally all data is saved in a cluster database file that is indicated by the ending .cdb. 

Script Execution 

A script is executed by calling the batch version of TTPplan with the –script option, 
providing the name of the script as parameter. So a script called sample.cmd would 
be executed by calling 

ttpplan_batch -script=sample.cmd 

in the directory where sample.cmd resides. The program outputs information on what 
it does to the console. This output may also contain error information in case of a 
syntax error or when trying to generate a schedule for an incorrect or inconsistent 
object model. In the latter case it is advisable to load the faulty object model with 
the interactive version of TTPplan, invoke the integrated check for object model 
errors and review the output. This is possible because TTPplan also writes the object 
model to the given file when the script execution fails. 

3.3.2 TTPbuild 

Figure 15 illustrates the object model of TTPbuild. Node design with TTPbuild relies 
on the cluster design and consequently a cluster database file from TTPplan is 
required before the user can begin using the tool. There are some objects in the 
object model that exist in both tools. These are the cluster mode, host, subsystem, 
message and message type objects. The instances of those objects are copied to the 
node database and cannot be deleted or changed as such an operation would 
contradict the cluster database that is shared by all nodes of the cluster. The creation 
of additional instances of the mentioned objects is allowed and often necessary, 
though. An example would be a message that locally connects two tasks with each 
other and is not visible to other nodes as it is not transferred over the TTP bus. Apart 
from the mentioned objects the key object in this development stage is the task. A 
subsystem runs one or more tasks to realize certain functionality. A task uses 
messages to communicate with other tasks either locally or remotely via the TTP bus. 
Exactly one task of a subsystem is required to send the message that was already 
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assigned to be sent by the subsystem in TTPplan. Every task runs in an application 
mode that represents a state of operation of the host. This object is not that 
important due to the limitation of only being able to use a single application mode in 
the current version of TTPbuild. A detailed coverage of all relevant objects and their 
relations with regard to the integration with TDL is presented in 3.5.2. A complete 
description of the object model of TTPbuild can be found in [8]. 

 

Figure 15 TTPbuild Object Model 

Sample Script 

The script language basically uses the same constructs as that of TTPplan which was 
explained above. The following is a sample script that creates an object model using 
the batch version of TTPbuild. It includes the complete beginning and ending of a 
typical script, but contains only a fraction of the actual code that would create a 
complete object model. 

TTA.Application_Command.run('File.New node ...', 'myNode', 
'myCluster.cdb') 

TTA.Node.App_Task.define ('myTask', time_budget = 100, period = 4000, 
deadline = 150, phase = 0) 

TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('myTask'), 
TTA.Message.instance ('myMessage'), access_type = 'agreed', raw=1) 

TTA.Node.Task_uses_Message.link ('myTask', 'myMessage').set (sends = 
'yes', receives = 'no', raw=1) 

[...] 

TTA.Application_Command.run('Schedule.Make new schedule') 

TTA.Application_Command.run('Schedule.Generate code') 

TTA.Application_Command.run('File.Save node as ...', 'myNode.ndb') 

This first line creates a new node database by assigning a name and providing the 
cluster database file myCluster.cdb on which it relies. The next three statements 
define the task myTask and link it to a message myMessage. It can be seen that the 
message is sent, but not received by the task. After a number of other lines that 
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create a complete and consistent node object model, the next command tells 
TTPbuild to create a task schedule for the node. After successful scheduling, C code 
files are generated that consist of a file that contains the node schedule in form of a 
configuration file for the operating system TTPos and files that implement the FT-
Com layer. Finally, the object model is saved to a node database file that is indicated 
by the ending .ndb. 

Script Execution 

The execution of a script works identical to TTPplan and is invoked by calling the 
batch version of TTPbuild with the –script option and providing the script file name 
as parameter: 

ttpbuild_batch -script=sample.cmd 

Just like TTPplan, the tool then outputs information on the progress and possible 
errors to the console. In case of an error it is an advisable strategy to load the faulty 
node database to the interactive version of TTPbuild and analyze it there with the 
provided error checks. 

3.4 Fault Tolerance Aspects 

The fault tolerance aspects of the toolchain are explained in detail in this section. The 
functions that are provided by the TTP tools are analyzed and ways for achieving 
fault tolerance and error detection in TDL are suggested. 

One of the goals of the integration of TDL with the TTP tools was to gain experience 
in how platform-dependent fault tolerance can be harnessed in a TDL program. The 
TTP protocol and corresponding tools provide various fault tolerance mechanisms in 
hard- and software. Most of these mechanisms realize systematic fault tolerance that 
do not require application awareness. The use of the TTP bus alone does not make 
the whole application fault tolerant, but it transparently takes care of the 
transmission of messages in a safe, fault-tolerant and consistent way. This is 
achieved by the bus guardian, the redundant communication channels and the 
membership service that all are hard-coded on the TTP communication controllers 
and verified to work reliably. Those features are covered in more detail in 2.4.1 
above and [7]. 

On top of the TTP bus protocol layers, the TTPos operating system and the fault-
tolerant communication layer (FT-Com) provide additional fault tolerance features. 
Those are controlled by the two design tools TTPplan and TTPbuild, that are used to 
configure them and eventually also generate the code that implements them. 
TTPplan creates MEDLs that determine the behavior of the TTP communication 
controller chips and TTPbuild generates the code for the FT-Com layer. 

The idea in the integration of TDL with the TTP tools is to come up with a way of 
describing what fault tolerance mechanism to apply as an annotation to the TDL 
language.  
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Replicated Modules 

A module is the top level construct of TDL that combines multiple modes and their 
tasks to form a functional unit. A TDL module represents the unit of distribution. This 
means that a single module cannot be split up by distributing parts of it among 
multiple nodes of a distributed real-time system. The fact that a module provides a 
service with well-defined input and output also makes it suitable as a unit of 
replication. A module that is replicated and gets exactly the same input as the 
original module will consequently also produce the same output. This is guaranteed 
by the exact specification of the timing behavior that is implemented by TDL and 
reliable time synchronization between the nodes of the cluster provided by the TTP 
protocol. Indeed there is a quite similar construct to the module used in the TTP tools 
called the subsystem. A subsystem is "the basic unit of packaging software 
components; as such, it is the unit of distribution, replication, and composability" [6]. 
All this leads to the conclusion that it is feasible to associate a TDL module with a 
subsystem in the context of the TTTech TTP tools. The TTP tools provide the ability to 
replicate subsystems and distribute them among the nodes of the TTP cluster. What 
must be provided to support replicated TDL modules is a facility to specify their 
distribution among nodes together with the ability to assign a module to multiple 
nodes, as it is possible for a subsystem with the TTP tools. The replication of modules 
also raises the issue of how to decide what the actual output of a module is when the 
replicas produce outputs that differ from each other, which might be due to a failure 
of a node. So what also must be specified is a so-called replica-deterministic 
agreement (RDA) algorithm that determines the actual value consistently for all 
modules that access the output of a replicated module. 

Details of the mapping of modules to subsystems are discussed in 3.5 below, 
whereas the specification of the distribution of modules is described in 3.6. 

Redundant Messages 

When mapping TDL modules to the objects in the TTP tools for every public port of a 
task a message on the TTP bus is generated, as we will see below in section 3.5. This 
is necessary as the module that uses the port might be located on a remote node. 
The TTP bus always is equipped with two independent communication lines, called 
channels. The TTP tools offer the possibility of transferring messages redundantly on 
both channels in order to tolerate a fault of one of them. Of course it may also be 
desirable to use both channels independently for maximized data throughput. It 
makes sense to let the user decide what level of safety should be applied to every 
public output port of a TDL task. How this specification works is discussed in 3.6 
below. 

Application-Specific Fault Tolerance 

The two fault tolerance aspects above are a good example of systematic fault 
tolerance as described in 2.2 in the previous chapter. The TDL application is not 
aware that the values of ports are transmitted redundantly or that modules are 
replicated and executed on multiple nodes. But for some applications it is beneficial 
to make them aware of the status of the fault tolerance mechanisms applied. The FT-
Com layer of the TTP development tools provides a message status that indicates the 
current status of replication by providing the number of online replicas. It is 
implemented as an integer value that is 0 when no replica is operating correctly and 
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equals to the number of replicas that produce valid output otherwise. Making this 
value accessible inside TDL modules enables them to react to the failure of a module 
and for example trigger an emergency shutdown or inform the operator of the 
system that a node has to be repaired or replaced.  

The integration of the message status function in TDL is realized as a special kind of 
sensor. To avoid changing the TDL syntax and consequently change the 
implementation of the compiler, a special driver name with the prefix REPL_ is used. 
It is followed by the name of a public output port of a task in the same or a different 
module. Consider the following example:  

sensor 

  int lightValue_messageStatus uses REPL_lightValue; 

This TDL sensor declaration assigns the message status of the public task output port 
lightValue to the sensor named lightValue_messageStatus. The sensor value can 
be used in the TDL program as a normal sensor as input ports for a task or directly 
as input for updating an actuator. 

For a detailed description of the implementation of this feature read on in section 
3.5.3 below. 

3.5 Mapping of TDL to TTP 

This section contains various aspects of the mapping of TDL modules to the TTP tools 
in order to execute them on the TTP platform. In the beginning the realization of the 
E machine-like task is explained, with special focus on the maintenance of the FLET 
property of TDL. Also an overview is given on the possibilities of mapping TDL 
constructs to the TTP tools. This is followed by subsections containing an in-depth 
description of how to map TDL modules to the object models used in the TTP tools. 
All objects in the model are described together with a procedure of how to generate 
them out of a TDL program and corresponding property file. Furthermore the glue 
code that links the TDL functionality code with the TTP operating system TTPos and 
the handling of the type mapping between TDL and the TTP tools is explained. 

E Machine Implementation 

In [2] an interesting statement concerning the implementation of the E machine can 
be found: 

"The E machine is a virtual machine. In an actual implementation of the E machine, 
E code need not be interpreted, but may be compiled into, say, C code, or even 
silicon." 

Indeed, when considering the nature of the TTP tools it does not make sense to have 
an E machine implementation that interprets E code. This is due to the lack of a 
scheduler in the operating system TTPos and the lack of a file system that would 
allow to load the E code file. TTPos only gets a pre-planned schedule by TTPbuild and 
dispatches the tasks according to this scheduling table. The schedule is static and 
planned at design time by TTPbuild and it is not possible to make any changes to it at 
runtime. So this fact makes the "schedule" instruction of the E code, which hands a 
task over to the scheduler, quite pointless. However we do need the "call" instruction 
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of the E code to execute drivers for sensors and actuators. The solution is to realize 
some parts of the E machine offline and create a periodic E machine-like task that 
performs the other tasks that have to be done at runtime. The offline part is the 
scheduling of tasks and bus messages and the implementation of the FLET 
semantics. This is done by generating a bus schedule with TTPplan and a suitable 
task schedule with TTPbuild as described below. The runtime part handles the 
execution of drivers for reading sensors and updating actuators and also contributes 
to the realization of the FLET property by relaying messages. The interpretation of 
the MEDLs by the TTP controllers can actually also be seen as a runtime task that 
originally is meant to be carried out by a standard TDL E machine. 

Maintaining FLET 

The main challenge of this plugin part was to maintain the FLET property of TDL, as it 
was explained in 2.3 above. Sensors have to be read at the beginning of FLET and 
actuators have to be updated at the end. To ensure this, a periodic E-machine-like 
task was introduced that is scheduled at the beginning of each FLET period and that 
executes the driver code for the actuators of the previous FLET period and the 
sensors of the next one. Local messages are generated for interfacing between the 
tasks and the E machine-like task. But still there might occur a violation of the FLET 
property when a task sends a message over the bus and it arrives before a task that 
uses this message is executed. This might happen especially if the actual CPU time 
consumption is short in comparison to the FLET length. In this case the receiving task 
has access to a value that should not be available to it at this point of time.  

 

Figure 16 FLET is violated 

Figure 16 illustrates such a scenario with a producer task that produces some value 
that is consumed by the consumer task. The FLET indicated at the top of the drawing 
applies to both tasks and therefore a value produced in one FLET should not already 
be available before the end of the FLET. Such a violation of FLET is not unlikely as 
TTPbuild actually tries to schedule tasks in a way that minimizes the time between 
message arrival and task execution to minimize the delay time. This is of course not 
correct for a TDL implementation and so the only way of maintaining the FLET is to 
pass messages through the E machine-like task on sending, receiving or both. 
Because messages can only be sent by tasks that are linked to the subsystem that is 
specified to send the messages in TTPplan and tasks can only be linked to one 
subsystem, it would require one E machine-like task per subsystem to pass 
messages that are sent through it. This would get quite complicated and would 
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produce some overhead because of the fact that every task takes at least 75 
microseconds due to context switching time. A better solution, and also the one that 
the plugin uses, is to pass only received messages to the E machine-like task and 
forward them to the appropriate tasks. 

 

Figure 17 FLET is maintained with an E machine-like task 

Figure 17 shows that same consumer and producer example as above with an E 
machine-like task that retransmits the message that contains the value produced by 
the producer task. Note that all tasks including the FT-Com layer are invoked at the 
exact same instance of time. Only the messages that link them were changed to 
ensure that the FLET property of TDL is maintained. 

 

Figure 18 Example with 3 E machine-like tasks 

Passing received messages through the E machine-like task solves the problem, but 
relies on the sending task to be executed before its output message gets transferred 
over the bus, which might in spite of sufficient CPU time still be impossible due to the 
global message schedule. An efficient and simple solution for maintaining FLET that 
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even works if there is not much free CPU time, a lot of messages on the bus and a lot 
of different FLET periods, which all require separate E machine-like tasks, is not 
possible with the TTPbuild tool. Consider the example in Figure 18 with three 
different FLET periods FLET 1 with 2000, FLET 2 with 1000 and FLET 3 with 500 
microseconds. For every different FLET period a separate E machine-like task is 
required, which are labeled E1, E2 and E3 in the figure. As the minimum time a task 
consumes in TTPbuild is 75 micro seconds, this means that we loose already 525 
micro seconds (7 times 75) of the 2000 micro seconds period for the execution of the 
E machine-like tasks. The fact that in the first 500 micro seconds three E machine-
like tasks have to be executed makes the situation even worse. When considering 
that a typical run of the FT-Com layer, which is needed to transfer messages via the 
TTP bus, also takes at least about 100 micro seconds, it is clear that this rather 
simple example is already tough to implement, as it only allows less than 200 micro 
seconds for the execution of an application task for the 500 micro seconds FLET. This 
value is anyway only reached in the best case, assuming that the global message 
schedule is designed in a way such that the value the task produces can be 
transmitted exactly before the end of its FLET. 

A solution that can handle scenarios such as the one described above would require 
modifying TTPbuild and the operating system TTPos so that every message is 
handled correctly according to the FLET property and it is not necessary to have one 
E machine-like task for every FLET period. 

Modules 

As already mentioned in 3.4, TDL modules can be mapped to subsystems in the 
context of the TTP tools. Both concepts have in common that they are the unit of 
distribution and are used to form a functional unit with well-defined input and output. 
In 3.4 arguments were presented in favor of using TDL modules also as unit of 
replication in the same way as subsystems are used in the TTP tools. 

A notable difference between TDL modules and TTP subsystems concerns the 
possibility of the occurrence of cycles due to dependencies between modules or 
subsystems. In TDL cycles can occur when a module imports ports from another 
module that in turn import ports from the first one. TTP subsystems are linked solely 
via messages and so problems with cycles are ruled out because messages have an 
initialization value. So even if a message is not already produced by a subsystem it 
does have a well-defined value. 

The tasks inside a TDL module are linked to the corresponding subsystem in 
TTPbuild. It is not possible in the tool to have tasks that are not associated to a 
subsystem. Every task must be linked to exactly one subsystem. This corresponds to 
the semantics in TDL, as a TDL task also is contained in exactly one module. 

For public task output ports of TDL modules a message on the TTP bus must be 
created. This is required as such a port must be accessible from all nodes of the 
system, as modules that import the public port might be located on a remote node. 
The TDL TTP plugin does not check if the port is actually used on any another node, 
but simply creates a TTP message for every public output port. It is implemented this 
way to keep it as simple as possible, but it might result in wasted bus bandwidth. On 
the other hand, it is in some cases beneficial to reserve the bus bandwidth for later 
extensions or modifications. This way it is for example possible to shift around 
modules between nodes without worrying if the change prohibits the communication 
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scheduler from finding a suitable schedule when additional messages have to be 
transferred via the bus. 

Tasks 

TDL tasks are basically mapped one-to-one to tasks in TTPbuild, as there is a similar 
task object there. However it is important to take care that the FLET semantics of 
TDL are preserved. How this is done is described above in the discussion of the E 
machine implementation. The ports of TDL tasks are realized by messages in the TTP 
tools. There are two main types of messages in the TTP tools, which are cluster 
messages, which are transferred over the TTP bus, and local messages, that are used 
to transfer values between tasks of the same node. It is transparent to the task 
which message is actually used. To ensure that the FLET property is not violated, it is 
not allowed for tasks to be linked directly to other tasks by a local or cluster 
message. Therefore all ports of a TDL task result in messages from and to the 
corresponding E machine-like task, where sensors are read, actuators are updated 
and messages are forwarded to other tasks. Initialization values for ports can be 
used as message initialization values. However it is not possible to use initialization 
functions, as message initialization values cannot be set at runtime.  

The WCET of a task can be mapped to the time budget of a task in the TTP tools. The 
time budget is the WCET plus some overhead and may also include some room for 
later extensions of a task. 

Modes 

Currently the TTP tools are restricted to only one application mode on cluster and 
node level. Only some special modes like a predefined startup mode for initialization 
purposes are supported. This restriction also requires that the TDL modules only use 
one mode, as it is not possible to implement more than this when using the TTP 
tools. The single TDL mode is mapped to a cluster mode in TTPplan and an 
application mode in TTPbuild.  

A mode also contains information on the invocation period for tasks and update 
frequencies for actuators. The period of a TDL task can be mapped one-to-one to the 
period of a task in the TTP tools. However for every different task period also a 
separate E machine-like task on the node with the same period of the task is 
required to handle its ports. The same applies to actuator updates, which also require 
an E machine-like task for execution. 

Sensors 

The reading of sensors must be performed inside the E machine-like task of the task 
that uses the sensor to maintain the FLET property. The value read is then either 
used directly by an actuator or delivered to the task that uses it using a local 
message. Public sensors are not supported, because their handling is rather difficult 
as the update frequency is determined by all consumers of the sensor value, 
requiring an analysis of the whole application to find out a suitable communication 
pattern. 
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Actuators 

Like sensors, actuators are required to be updated in the E machine-like tasks that 
were created for the FLET period that corresponds to the update frequency of the 
actuator. Actuators may be updated by task output ports within the same module or 
by imported public ports of other modules that can be located on a remote node. 
Consequently, this results in local or bus messages that are received by the E 
machine-like task that performs the actuator update. 

3.5.1 Mapping TDL to TTPplan Objects 

Before going into detail by listing every relevant object and link and how the plugin 
has to generate it, we give a brief overview of what has to be done. Figure 14 on 
page 29 illustrates the object model that TTPplan uses with all objects and their 
relations. The most relevant objects are hosts, subsystems and messages. A host is a 
node of the distributed system in the context of the TTP tools. A subsystem should 
comprise a well-defined functional abstraction and is the unit of distribution, 
composability and replication. This definition suggests that TDL modules and TTPplan 
subsystems can be mapped one-to-one, which is exactly what the plugin does. Every 
subsystem then needs to be assigned to a host according to the property file. Cluster 
messages are created for every public output port of a task and are linked to the 
corresponding subsystem. The period of those messages can be determined by the 
period of the tasks specified in the TDL code that produce them. In TTPplan it only 
has to be defined which subsystems send which messages. Reception does not have 
to be specified because the broadcast nature of the bus allows every subsystem on 
every node to receive any message. The message type and length is derived from a 
standard TDL type mapping table that maps TDL types to types in C as described in 
3.5.4 below. 

In the following all objects and links of the TTPplan object model are listed together 
with relevant attributes. For every entity it is described how the TDL plugin generates 
values for it, based on the TDL modules and the property file that contains additional 
specification, especially regarding distribution and fault tolerance aspects. In 
addition, the script command that is used to generate the object is shown. Attribute 
values which act as place holders for real values are enclosed in square brackets. 

Object: Message 

Description: 

Represents a message that is sent on the bus. It is important to note that only the 
sending of messages is relevant in TTPplan, because due to the broadcast nature of 
the TTP bus every message can be received by every host and therefore the MEDLs 
created by TTPplan do not need to contain this information. 

Generation: 

The generation is done by iteration over all modules and all tasks invoked within the 
modules. If the task is tagged with the public keyword, for all output ports of the 
task a message is created. Public sensors are not supported by the plugin as their 
handling is rather complicated. The problem here is that all tasks or actuators that 
use the sensor would have to be analyzed in order to determine the update 
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frequency of the sensors and consequently the period of the message that transports 
the sensor value. 

Important attributes: 

• init_value: 

This value determines the initialization value for the message. As TDL allows 
the specification of initialization values for output ports this value can be used 
directly, with the limitation that currently only integer values are handled 
correctly. 

• agreement: 

Specifies the replica-deterministic agreement algorithm. This needs only to be 
set for messages of replicated subsystems or TDL modules respectively. As TDL 
does not provide such a specification, the value has to be read from the 
property file for replicated modules and left blank if replication is not used. 

Script command: 

TTA.Message.define ('[messageName]', agreement = '[agreement]', 
  init_value = '[initValue]', raw=1) 

Object: Msg_Type 

Description: 

This object represents the type of a message. There are pre-defined types and it is 
also possible to create custom types. 

Generation: 

The type handling mechanism of the TDL plugin are described in the separate section 
3.5.4 below. 

Script command: 

TTA.Msg_Type_P.define ('[typeName]', length = '[typeLength]', 
  type_cat = '[typeCategory]', typedef = '[cTypeDef]', 
  type_length = '[cTypeLength]', raw=1) 

Link: Msg_Type uses Message 

Description: 

This link associates a message with a message type. 

Generation: 

Every message has to be linked to the message type that was created for it before. 

Script Command: 

TTA.Message_uses_Msg_Type.add (TTA.Message.instance ('[messageName]'), 
  TTA.Msg_Type_P.instance ('[messageType]')

Object: Cluster 

Description:  

Represents the whole TTP cluster which is a collection of hosts. It contains a number 
of global attributes. 
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Generation: 

The name for the cluster can be obtained by reading the property file. For most 
attributes of the cluster object the default values can be used. 

Important attributes: 

• tr_period: 

This attribute determines the length of a TDMA round of the TTP communication 
bus of the cluster. This value must not be longer than the shortest period of a 
message, because otherwise it would not be possible to transfer it in the 
required time. The shortest message period is figured out by the plugin by 
analyzing the list of all messages that need to be transferred. tr_period is set 
to the shortest message period divided by 2. The reason for this is that a 
cluster cycle anyway has to consist of at least of two TDMA rounds and the 
period length of a TTPbuild application cycle equals the cluster cycle length. 
Therefore it makes more sense to double the number of TDMA rounds to run 
the task that produces the message with the shortest period once per cluster 
cycle. This way also the schedule TTPbuild generates is more readable when 
viewing it with the tool, as otherwise the application cycle has the double length 
of the shortest message period and every task invocation would be contained 
twice in the schedule, as the application cycle length is always based on the 
cluster cycle length.

• transmission_speed: 

This value specifies how fast data is transferred on the TTP bus. The value can 
be 5000 kilobits per second at the maximum, resulting in a bandwidth of 10000 
kilobits per second when using both channels independently. Of course this 
setting is a trade-off between being able to transmit more data versus a less-
fault tolerant transmission with probably more transmission errors. The value is 
read from the property file. The recommended value is the maximum of 5000 
bits per second, as it gives the scheduler more room and therefore increases 
the probability to find a valid schedule for a given TDL program. It would also 
be possible to let this value be determined automatically with good knowledge 
of how the schedule is generated by TTPplan and information of how much 
bandwidth is actually available to the application, which is the net bandwidth 
after the subtraction of protocol overhead. The size of the messages, which is 
needed for such a calculation as well, is available to the plugin through the type 
mapping mechanisms, as described in section 3.5.4 below. 

• controller_type, physical_interface: 

These are hardware-specific parameters that need to be customized to match 
the target hardware. The plugin currently leaves them at their default values 
TTTech_C2 and MFM. 

• fixed_round_number, max_tdma_rounds, min_tdma_rounds: 

With these values the cluster scheduler can be influenced concerning the 
number of TDMA rounds a cluster cycle consists of. The current version of the 
plugin does not use them and leaves them at their default values. 
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Script command: 

TTA.Cluster.define ('[clusterName]', byte_order = 'big_32_endian', 
  tr_period = '[lengthOfTDMARound]', transmission_speed = 
  '[transmissionSpeed]', raw=1) 

Object: Host 

Description: 

This object represents a host of the cluster. A host in context of the TTTech TTP tools 
is a node of the distributed system. 

Generation: 

The specification of hosts has to be obtained from the property file. It contains a list 
of hosts for every module that specifies on which hosts they should be assigned. Out 
of this list a list of all hosts can be obtained and then for every host an object can be 
generated named with the name of the host. 

Important attributes: 

• serial_number: 

The serial number is a number used to clearly identify a host. It must be unique 
and can be automatically generated by numbering every host starting at 1. 

• mux_period, mux_round: 

These two attributes are needed when using multiplexing of TDMA slots. The 
period and round of the host can be set to share a slot with a different host. 
The plugin does not use multiplexing and so it sets both values to 1, resulting in 
having exactly one slot per host.  

• controller_type: 

This is the same hardware-specific attribute as described above for the cluster 
object and is set to TTTech_C2, which specifies the hardware configuration that 
matches the available development cluster. 

Script command: 

TTA.Host.define ('[hostName]', mux_round = '1', mux_period = '1', 
  serial_number = '[serialNumber]', controller_type = 
  'TTTech_C2', raw=1) 

Link: Host in Cluster 

Description: 

This attribute specifies the hosts a cluster consists of. Every host needs to be linked 
to a cluster. 

Generation: 

As we have only a single cluster all the plugin has to do is to link every generated 
host object with the cluster. 

Script command: 

TTA.Host_in_Cluster.add (TTA.Host.instance ('[hostName]'), 
  TTA.Cluster.instance ('[clusterName]')) 
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Object: Slot 

Description: 

A slot represents a single slot of the TDMA round of cluster communication. Every 
slot must be assigned to a host. 

Generation: 

Every host needs to have a slot in the TDMA round and so for every host a slot object 
needs to be generated. Its name consists of the name of the node and the ending 
_slot. 

Important attributes: 

• sort_key: 

This attribute can be used to influence the arrangement of slots. By default the 
scheduler of TTPplan determines the order of the TDMA slots. When this value 
is set, the order of slots will follow the order of the values of this attribute. The 
plugin does not use this option and lets the scheduler determine the order 
automatically.  

Script command: 

TTA.Slot.define ('[slotName]') 

Link: Host uses Slot 

Description: 

This link assigns every host a sending slot in the TDMA round of the cluster. When 
multiplexing is not used, then every host has to be linked to exactly one slot. 

Generation: 

Because the plugin does not use multiplexing, it simply links every host to the slot it 
created for it. 

Script command: 

TTA.Host_uses_Slot.add (TTA.Host.instance ('[hostName]'), 
  TTA.Slot.instance ('[slotName]'))

Object: Cluster_Mode 

Description: 

Represents a cluster mode. The version of TTPplan that was used for the thesis has a 
limitation of only being able to handle a single cluster mode. This limitation does not 
include the following three pre-defined modes that TTPplan supports by default: 
Startup_Mode, Sleep_Mode and Download_Mode. The Startup_Mode is a special 
mode in which every cluster starts to do some initialization routines for every host 
and in which the start-up of the communication system is performed. 

Generation: 

In addition to the startup mode, an application mode needs to be created that is the 
mode the system runs in when operating normally. The name of the mode is 
generated by taking the name of the TDL mode inside a TDL module and adding the 
ending _clustermode. It does not matter from what module the name is taken as the 
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plugin anyway only allows the usage of a single mode throughout the whole set of 
TDL modules. 

Important attributes: 

• i_frame_factor: 

This is a mandatory attribute that sets the minimum number of so-called I 
frames per TDMA round. Initialization frames contain no application data and 
therefore are protocol overhead. They most yimportantly contain the global 
time and membership information and are required for the integration of hosts 
into the cluster. The plugin uses a standard value of 2 here. 

Script command: 

TTA.Cluster_Mode.define ('[clusterName]', i_frame_factor = 2)

Link: Cluster_Mode after Cluster_Mode 

Description: 

This link lets the user specify which modes follow each other by specifying a 
successor and a predecessor mode. Typically there exists a link to define which mode 
should follow the Startup_Mode. 

Generation: 

Since there is only a single application mode, there simply needs to be created a link 
to let the application mode be the next mode after the Startup_Mode.

Important attributes: 

• request_mode_change: 

This mandatory attribute determines in which TDMA round a mode change can 
be requested by a host. The plugin uses a value of 1 here, so a mode change 
can be requested in the first TDMA round of the cluster cycle. 

Script commands:

TTA.Cluster_Mode_after_Cluster_Mode.add 
  (TTA.Cluster_Mode.instance ('Startup_Mode'), 
  TTA.Cluster_Mode.instance ('[clusterMode]')) 
TTA.Cluster_Mode_after_Cluster_Mode.link ('Startup_Mode', 
  '[clusterMode]').set (request_mode_change = '1', raw=1) 

Link: Cluster_Mode of Cluster 

Description: 

This link assigns a cluster mode to the cluster. Every mode that is used by the 
application has to be linked to the cluster. 

Generation: 

The created application mode and the Startup_Mode are the only cluster modes we 
need, and so it is sufficient to create two links to the cluster for them. 

Script command: 

TTA.Cluster_Mode_of_Cluster.add (TTA.Cluster_Mode.instance 
  ('[clusterMode]'), TTA.Cluster.instance ('[clusterName]'))
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Link: Cluster_Mode uses Message 

Description: 

This link specifies all messages that are used in a cluster mode. 

Generation: 

Since we have only one cluster mode besides the dedicated Startup_Mode, the plugin 
has to link all messages with it. 

Important attributes: 

• d_period: 

This attribute stands for "design period" and specifies the period of the 
transmission of a message on the TTP bus. The plugin needs to set this value to 
the period of the TDL task that belongs to the output port for which the 
message was created. 

• max_round, min_round: 

These two attributes can be used to influence the scheduling of messages. A 
maximum and minimum TDMA round number of the cluster cycle can be 
specified, resulting in the message being scheduled between those two values. 
It might be necessary for more complicated applications to modify those values. 
Basically it is not desirable to transfer messages to early in the cluster cycle, as 
the mechanism to maintain FLET described above relies on the task that 
produces the message to run before it is transferred. On the other hand, 
transferring messages too late in the cycle is also not good, as then there might 
be not enough room for the FT-Com layer to run which has to provide the 
correct values to the E machine-like task before the beginning of the next FLET 
period. The plugin does not use the values, which works for simple schedules. 

• redundancy_degree 

This attribute specifies whether to transfer the message via one or two 
channels of the TTP bus. The only values allowed are therefore 1 and 2. It is 
read from the property file so that the user can decide what level of redundancy 
should be applied. The property and its handling is described in detail in 3.4 
and 3.6 respectively. 

Script commands: 

TTA.Cluster_Mode_uses_Message.add (TTA.Cluster_Mode.instance 
  ('[clusterMode]'), TTA.Message.instance ('[messageName]')) 
TTA.Cluster_Mode_uses_Message.link ('[clusterMode]', 
  '[messageName]').set (d_period = [messagePeriod], 
  redundancy_degree = [redundancyDegree]) 

Link: Host in Cluster_Mode 

Description: 

This link connects a host to a cluster mode. 

Generation: 

Due to the limitation of TTP build there is only one cluster mode. All the plugin has to 
do is to link every host to this cluster mode and the Startup_mode. 
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Important attribute: 

• may_request_mode_change 

This attribute specifies to which mode a host is allowed to change to when it is 
in the cluster mode linked to it. For the link to the Startup_Mode the only 
regular cluster mode must be specified here. 

Script commands: 

TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ('[hostName]'), 
  TTA.Cluster_Mode.instance ('[clusterMode]')) 
TTA.Host_in_Cluster_Mode.link ('[hostName]', '[clusterMode]).set 
  (may_request_mode_changes = '[modeAllowedToChangeTo]', raw=1) 

Object: Subsystem 

Description: 

This object represents a subsystem, which is the unit of distribution, replication and 
composability in the TTP tool chain. 

Generation: 

We already argued above in 3.4 and 3.5 that a subsystem can be mapped one-to-
one to a TDL module. In TTPplan the plugin needs to create a subsystem for each 
module that sends a message on the bus, i.e. for every module that contains tasks 
with public output ports. 

Important attributes: 

• reintegration_type: 

Specifies if and how a repaired host hosting that subsystem should be 
reintegrated. This attribute is read from the property file for each module. 
Details can be found in section 3.6. 

Script command: 

TTA.Subsystem.define ('[subsystemName]', reintegration_type = 
  '[reintegrationType]', raw=1)

Link: Subsystem sends Message 

Description: 

Specifies the messages that are sent by a subsystem. 

Generation: 

As TDL modules are mapped to TTP subsystems, all messages created for the public 
task ports of TDL modules need to be linked to the corresponding subsystem. 

Script command: 

TTA.Subsystem_sends_Message.add (TTA.Subsystem.instance 
  ('[subsystemName]'), TTA.Message.instance ('[messageName]')) 

Link: Host runs Subsystem in Cluster_Mode 

Description: 

This link defines the assignment of subsystems to hosts and cluster modes. 
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Generation: 

The assignment of modules to hosts can be obtained from the property file as can be 
seen in 3.6 below. As TDL modules are mapped one-to-one to subsystems the plugin 
has to generate one link for every subsystem and link it to the corresponding host 
from the property file and to the only cluster mode. 

Script command: 

TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance 
  ('[hostName]'), TTA.Subsystem.instance ('[subsystemName]'), 
  TTA.Cluster_Mode.instance ('[clusterMode]')) 

3.5.2 Mapping TDL to TTPbuild Objects 

After the generation of the bus schedule by TTPplan, system configuration is 
continued on node-level with TTPbuild. Figure 15 on page 31 illustrates the object 
model used by TTPbuild. On node-level tasks, messages and subsystems are the key 
objects. Every task in TDL can be mapped to a TTPbuild task. A task has to be linked 
to exactly one subsystem. A subsystem can be mapped one-to-one to a TDL module 
as explained above and therefore every task in a module has to be linked to the 
according subsystem. In the TTPbuild object model, a task can only interact with 
other tasks by sending and receiving messages in TTPbuild, which is very similar to 
TDL where task communicate via input and output ports. An important aspect of the 
creation of the TTPbuild object models for the hosts is the maintaining of the FLET 
property and other TDL semantics like the execution of drivers for reading sensors 
and updating actuators at the begin and end of FLET as described at the beginning of 
this chapter. 

On the following pages all relevant objects and links of the TTPbuild object model are 
explained together with the information of how the plugin generates them out of TDL 
modules and the property file. 

Object: App_Mode 

Description: 

This object represents an application mode.  

Generation: 

An application mode in TTPbuild can be identified with a TDL application mode. Thus, 
TDL modes can be mapped onto the App_Mode object one-to-one. The current 
version of TTPbuild only supports a single application mode and therefore all TDL 
modules must follow this restriction as well, i.e. only TDL modules having one mode 
are supported. Consequently, only one mode exists and the name of the mode can 
be used for the App_Mode object. 

Important attributes: 

For the required attributes maximum_interrupt_latency, neg_correction_limit, 
pos_correction_limit, neg_synch_limit and pos_synch_limit default values 
suggested by TTPbuild are used. 
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Script command: 

TTA.Node.App_Mode.define ('[applicationMode]', 
  maximum_interrupt_latency = '150 us', pos_synch_limit = 'max ( 
  TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2, 
  TTA.Cluster.tc_period * 0.0015)', neg_synch_limit = 'max ( 
  TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2, 
  TTA.Cluster.tc_period * 0.0015)', neg_correction_limit = 'max ( 
  TTA.Cluster.clock_sync.macro_tick_length / 1000 * 3, 
  TTA.Cluster.tc_period * 0.002)', pos_correction_limit = 'max ( 
  TTA.Cluster.clock_sync.macro_tick_length / 1000 * 3, 
  TTA.Cluster.tc_period * 0.002)', raw=1) 

Link: App_Mode maps_to Cluster_Mode 

Description: 

This link associates an application mode of a node to a mode on cluster level. 

Generation: 

Since there is only a single application mode and a single cluster mode those two 
have to be linked. 

Script command: 

TTA.Node.App_Mode_maps_to_Cluster_Mode.add (TTA.Node.App_Mode.instance 
  ('[applicationMode]'), TTA.Cluster_Mode.instance ('[clusterMode]'),) 

Object: Host 

Description: 

Represents a host or node of the cluster. 

Generation: 

The host object was already generated by TTPplan. 

Important attributes: 

• node_config: 

Specifies the type of hardware used. It is set to "TTPpowernode_C2", which is 
used in the TTTech TTP development cluster. 

Script command: 

TTA.Host.customize ('[hostName]', node_config = 'TTPpowernode_C2', 
  raw=1) 

Object: Task 

Description: 

This represents a task executed by the TTPos operating system. There are user-
defined tasks that implement the actual application and also system tasks that are 
automatically generated in order to handle the transmission and reception of 
messages and to perform time synchronization with the other nodes of the cluster. 
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Generation: 

Basically every TDL task is mapped onto a corresponding TTPbuild task with its name 
and period. But also additional tasks have to be created for maintaining the FLET 
property and the execution of TDL drivers, which are functions that are performed by 
the E machine-like task as described at the beginning of this chapter. 

Important attributes: 

• time_budget: 

TTPbuild uses the concept of a time budget. It is calculated by taking the worst 
case execution time (WCET) of a task and adding some overhead needed by the 
operating system to actually switch between task (context switching time). The 
plugin neglects this time and sets the time budget to the TDL WCET value. For 
the E machine-like tasks the minimum value for the time budget of 75 micro 
seconds-like is used because the execution of drivers in the E machine-like task 
should not take more time as they are logically executed in zero time. Also the 
retransmission of messages that are received on behalf of a task does only take 
very little CPU time. 

• period: 

This attribute is used to specify the period of the task in micro seconds. It is set 
to the period of the TDL task. For the E machine-like tasks also the period of 
the corresponding TDL task is used. 

• deadline: 

Used to set a deadline for the task to influence the scheduling of TTPbuild to 
schedule the task in a way that it will finish before the deadline. This value is 
relative to the task period and in microseconds. For normal tasks this value is 
left blank because TTPbuild will schedule them with respect to the time when 
the messages a task consumes are received and the time messages a task 
produces have to be available for other tasks. For the periodic E machine-like 
task this value is set to ensure that it is scheduled at the beginning of every 
period. 

• phase: 

The phase is the time interval between the beginning of the cycle and the 
execution of the task. Again this is not set for normal tasks but set for E 
machine-like tasks to ensure that they are scheduled correctly at the beginning 
of the FLET. 

• time_source: 

This attribute defines the time source for the task. There are two options here: 
local_time, which refers to the local clock of the host, and reference_time, 
which refers to the global clock obtained by the synchronization mechanisms of 
the TTP protocol. In most applications this choice is not that important, because 
the local clock is synchronized to the reference time anyway. The default is 
local_time, which has the advantage that it is available regardless of a 
working connection to the bus. 
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Script command: 

TTA.Node.App_Task.define ('[taskName]', time_source = 
  'local_time', time_budget = '[timeBudget]', period = 
  '[period]', deadline = '[deadline]', phase = '[phase]', raw=1) 

Link: Task in App_Mode 

Description: 

This links a task to an application mode. 

Generation: 

Since there is only one application mode, every task is linked to it. Also every E 
machine-like task has to be linked to it. 

Script command: 

TTA.Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance  
  ('[taskName]'), TTA.Node.App_Mode.instance ('[applicationMode]') 

Object: Subsystem 

Description: 

The subsystem object is the same as in TTPplan. Subsystems that were already 
created in TTPplan are available in TTPbuild as well and cannot be edited or deleted. 
In addition there is also the possibility to create node-local subsystems. 

Generation: 

For normal TDL application tasks the subsystems that were already created with 
TTPplan are used. For the E machine-like tasks a separate subsystem named 
"emachine" is created. It would also be possible to assign the E machine-like tasks to 
one of the already created subsystems, but as those tasks serve multiple modules 
and consequently subsystems created for them, it would be misleading to do so.  

Script command: 

TTA.Subsystem.define ('emachine') 

Link: Subsystem runs Task 

Description: 

Specifies which task is run by which subsystem. Every task is required to be run by 
exactly one subsystem that was specified to send the message produced by the task 
in TTPplan. 

Generation: 

Since TDL modules are mapped one-to-one to subsystems, every task is linked to the 
according subsystem that was created for the module in TTPplan. All E machine-like 
tasks are linked to the "emachine" subsystem. 

Script command: 

TTA.Node.Subsystem_runs_Task.add (TTA.Subsystem.instance 
  ('[subsystemName]'), TTA.Node.App_Task.instance ('[taskName]')) 
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Link: Host runs Subsystem in Cluster_Mode 

Description: 

This link specifies which subsystem is executed on which host in which cluster mode. 

Generation: 

This link is already present in the host object model, as it was created by TTPplan 
before. 

Object: Message 

Description: 

This object represents a message on node level. It can either be a global message 
that is transferred over the TTP bus and was already defined with TTPplan, or a local 
message that is used to transfer values between tasks running on the same host. 

Generation: 

Global messages were already defined with TTPplan and cannot be altered in 
TTPbuild. Local messages are generated for transferring values from the E machine-
like tasks to application tasks in order to transfer sensor readings and messages 
received from the bus. For actuator updates local messages from the tasks to the E 
machine-like tasks are created. 

Important attributes: 

• d_period: 

Specifies the design period for local messages. The message is transferred once 
per period. It is set to the period of the E machine-like task and the sending or 
receiving task 

• init_value: 

This attribute sets an initialization value for the message. TDL supports the 
specification of initialization values for task output ports and actuators. The 
plugin supports the usage of constants as initialization values in TDL modules 
and applies them to the init_value attribute. 

Script command: 

TTA.Message.define ('[messageName]', d_period = [period], 
  init_value = [initValue]) 

Link: Message uses Msg_type 

Description: 

This link assigns a message type to a message. The message types were already 
created in TTPplan. 

Generation: 

The type of a message is derived from the type of the task port the message is 
created for. 
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Script command: 

TTA.Message_uses_Msg_Type.add (TTA.Message.instance ('[messageName]'), 
  TTA.Msg_Type_P.instance ('[messageType]')) 

Link: Task uses Message 

Description: 

This link specifies which messages a task uses. Every message that was specified to 
be sent by the host in TTPplan before must be linked to a task and selected to be 
sent by it. 

Generation: 

For every TDL task it is necessary to analyze the input and output ports and link 
messages according to them. For sensor input ports the local messages from the E 
machine-like task where the sensor code is executed to the task that uses the sensor 
must be linked. Messages from other tasks also have to be passed via the E 
machine-like tasks to ensure the FLET property of TDL. For output ports it depends 
on whether a task is tagged with the public keyword or not. The output ports of 
public tasks are transferred over the bus and therefore have to be linked to the 
cluster messages which where already generated with TTPplan. For non-public tasks 
local messages that contain their output port values have to be created and linked 
with the tasks. 

Important attributes: 

• received: 

This attribute selects whether or not the linked message is received by the task. 
Valid values are yes and no. Every message on the bus can be received by 
every task without changing the bus schedule, as every message is broadcasted 
and can be received by every host. If a task has to receive messages from the 
bus, creation of an additional task that implements the fault tolerance 
communication (FT-Com) is initiated. This task will be scheduled before the 
consuming task to prepare the value for it. Therefore every such message sent 
over the bus also consumes CPU time on the sending and the receiving host 
and complicates the task schedule. 
Basically every input port of a task results in a received message. For messages 
from the bus this means that the E machine-like task has to receive the 
message and pass it on to the task by means of a local message. In addition, 
TDL provides for every task that the output port value of the last round is 
available to it in the current round as well, regardless if the task actually uses it 
or not. For public tasks this means to receive the output port message from the 
bus with an FT-Com layer task and for local tasks it means to create a message 
that is passed through the E machine-like task. 

• sent: 

This attribute selects if a message is sent by a task. This also triggers the 
creation of FT-Com layer tasks when the messages are broadcasted on the TTP 
bus. Basically for every task output port one message has to be sent that either 
is a cluster message or a node-local one to other tasks or to the E machine-like 
task for actuator updates. The E machine-like tasks itself send messages 
containing sensor readings and received messages from the bus that are 
forwarded via local messages to the appropriate tasks. 
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• access_type: 

The access type can be raw, agreed or both agreed and raw. The plugin sets 
this to the default value of agreed, which is suitable for most applications. 

Script commands: 

TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance 
  ('[taskName]'), TTA.Message.instance ('[messageName]'), 
  access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('[taskName]', '[messageName]').set  
  (sends = '[isSent]', receives = '[isReceived]', raw=1) 

3.5.3 Glue Code Generation 

The so-called glue code for the integration of TDL and the TTTech TTP tools consists 
of two parts. One part of it is wrapper code that integrates the C functionality code 
that is provided for all sensors, actuators and tasks of every TDL module with the TTP 
tools. The specification of TDL includes language binding rules that outline how the 
functionality code for the C language should look like. The advantage of such a 
standard is that the code is reusable even in the case of different target platforms. 
The goal for the design and implementation of the glue code was to follow those 
standards as closely as possible and to achieve a certain degree of platform 
independence for the functionality code. The other part of the glue code is code that 
implements the E machine-like tasks that have two purposes: The execution of 
drivers, which is sensor and actuator code, and the handling of retransmission of 
messages in order to maintain the FLET property of TDL. Those two parts will be 
explained below in detail together with strategies of automatic code generation for 
them. 

Note that for the implementation of the plugin only a basic set of language binding 
rules were used due to the fact that the rules for the C language were still in 
developmental state. The rules are most probably not identical in a later version as 
rules for the type mapping and the naming of functions to support qualified names 
might be created or changed. 

TDL Compiler Language Bindings 

We reconsider the simple TDL module lightController.tdl as introduced in 2.3.2: 

module lightController { 
 
  sensor 
    int brightness uses getBrightness; 
 
  actuator 
    int light uses setLight; 
 
  public task calc [100us] { 

    input 
       int brightnessValue; 
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    output 
       int lightValue := 0; 

    uses calcImpl(brightnessValue, lightValue); 

  } 
 
  start mode controlLight [4000us] { 

    task 
      [1] calc(brightness); 

    actuator 
      [1] light:=calc.lightValue; 

  } 

} 

In this module there are three calls to external functionality code, indicated by the 
keyword uses. The following functionality code header file lightController.h must 
be provided: 

int getBrightness(); 

void setLight(int lightValue); 

void calcImpl(int brightness, int *lightValue); 

Note that sensor getter functions are parameter-less functions with a single return 
value and actuator setter functions have no return value and a single parameter. 
Functions that implement tasks have no return value and their parameters are 
passed according to the order in the TDL code, where input ports are passed by value 
and output and state ports are passed by reference. The reference to the output port 
variable initially contains the value from the last execution of the task. In addition to 
the header file, a file lightController.c must exist that contains the actual 
implementation of the functions. 

TTP tools task implementation 

In TTTech's TTP toolchain as a last step the code for the task implementation must 
be provided. The tasks are specified with their period and the messages they send 
and receive. It does not matter whether the message is transmitted over the TTP bus 
or whether it is a local message as both are handled in the same way by TTPos and 
the FT-Com layer respectively.  

Let's assume a task increment that consumes the message inputValue and sends 
the message outputValue. An implementation of this task would look like the 
following: 

tt_task (increment) 
{ 

  tt_Raw_Value (outputValue) = inputValue + 1; 

} 

tt_task and tt_Raw_Value are both macros that are either defined in a TTPos library 
file or a file that is created by TTPbuild containing the FT-Com layer code. The 
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programmer can assume that at the beginning of the execution of the code all 
messages a task receives are available as variables with the current value of the 
message. The name of the variable equals to the name of the message that was 
given in TTPplan and TTPbuild respectively. The tools handle the generation and 
execution of the FT-Com layer code that receives messages from the bus as needed. 
Arbitrary C code can be used in the task implementation. In contrast to TDL 
semantics, also sensor getter and actuator setter functions are typically included in 
the task code. The output messages can be passed by calling the macro 
tt_Raw_Value (message) for every message. TTPos and the FT-Com layer then 
handle the transmission of messages either locally or via the TTP bus. 

Let us take a look at the resulting glue code from the example TDL module 
lightController.tdl above. Before the glue code can be generated, a task in 
TTPbuild must be specified that has the appropriate period of 4000 micro seconds 
and a time budget of 100 micro seconds. Furthermore the two messages 
brightnessValue for the input and lightValue for the output ports must be 
created. Because TDL requires that the output port of a task contains the output 
value produced in the last round, we need an additional message from the E 
machine-like task that we name lightValue_in. So the glue code that maps the TDL 
functionality code to the TTP task code looks like this: 

#include lightController.h 
 
tt_task (calc) 
{ 
  calcImpl (brightnessValue, &lightValue_in); 
  tt_Raw_Value (lightValue) = lightValue_in; 
} 

Note that brightnessValue is passed by value and lightValue_in is passed by 
reference. The function calcImpl modifies the value lightValue_in, which is then 
passed on to the macro tt_Raw_Value in order to set the value of the message 
lightValue.  

E Machine-like task Generation 

The E machine part of the glue code consists of the execution of sensor readings and 
actuator updates and the retransmission of messages. A retransmission is necessary 
when a task receives a message from the TTP bus. As described in 3.5 in order to 
ensure that the FLET property of TDL is not violated, the E machine-like task receives 
the message and then passes it on to the task with the help of a local message. To 
perform a retransmission, an E machine-like task must be created with TTPbuild with 
the corresponding received and sent messages. The actual retransmission is done 
with one line in the task code that copies the value of the received message to the 
sent one: 

tt_Raw_Value (sentMessage) = receivedMessage; 

The execution of drivers for sensor readings and actuator updates is also done by 
making the E machine-like task send and receive the appropriate messages. For 
sensor readings only local messages have to be created as public sensors are not 
supported. Actuator updates might also require the creation of messages on the bus, 
depending on if the task that sets the value for it is located on a remote node or not. 
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The following part of the glue code implements the E machine-like task for the 
example module lightController.tdl above. 

#include lightController.h 
 
tt_task (emachine) 
{ 
  setLight(lightValue); 
  tt_Raw_Value (brightnessValue) = getBrightness(); 
} 

A special case occurs when a sensor is connected directly to an actuator. An example 
for such a situation is the following modified version of the example above: 

module lightController { 
 
  sensor 
    int brightness uses getBrightness; 
 
  actuator 
    int light uses setLight; 
 
  start mode controlLight [4000us] { 

    actuator 
      [1] light := brightness; 

  } 

} 

In this case the value of the sensor is read and within the same instance of the E 
machine-like task the actuator must be updated with the value. This results in a 
different handling of the sensor inside the E machine-like task, whereas the code 
generated for the actuator remains the same: 

#include lightController.h 
 
tt_task (emachine) 
{ 
  int brightness = getBrightness(); 
  setLight(brightness); 
} 

For the sensor a local variable with the name of the sensor is generated. Compared 
to the solution of directly calling setLight(getBrightness()) this has the 
advantage of unchanged code generation for the actuators and it also prohibits that 
the sensor is called more than once when it is used by multiple actuators or if it is 
broadcasted in a message on the TTP bus. 

Message Status Sensor 

As described in 3.4 above, the plugin supports a special sensor that gives TDL access 
to the message status value that is provided by the FT-Com layer. The message 
status of an example message lightValue can be obtained by calling the macro 
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tt_Message_Status (lightValue) 

So for a special sensor declaration like 

sensor 
  int lightValue_messageStatus uses REPL_lightValue; 

we need to replace the call of the function REPL_lightValue(), that normally would 
be used in the glue code of the E machine-like task, with the call to obtain the 
message status tt_Message_Status (lightValue). 

3.5.4 Type Mapping 

For a successful generation of code for the TTP platform out of TDL modules and 
functionality code, the types that TDL uses must be mapped to the types of the TTP 
tools. The TTP tool chain itself contains two different type systems. As applications 
for the TTP platform are developed in C it is necessary to use the types of this 
language. But there is a different notion of types for the TTP communication bus 
which uses its own type classification. These types must be mapped to each other as 
well, which is done by the TTP tools by means of the Msg_Type object, which contains 
a number of attributes for type specification. We need to have a way to specify the 
mapping of a TDL type to those two different type systems. 

The goal for the type handling of the plugin was to provide a standard type mapping 
that is suitable for most applications, but also to give the user the ability to 
customize it in case he or she has specific requirements. The solution was to use an 
external file that specifies the mapping and to provide a standard version of the file 
that contains a default mapping. This gives the user the ability to conveniently 
modify the mapping when needed. As file format the Java property file format was 
used, same as for the main property file that the plugin uses (see 3.6). The file 
containing the type mapping is called types.properties and must be located in the 
resource directory of the plugin that is specified in the TTPPLatform.properties 
file. All properties of a type are directly used as attributes for the Msg_Type object in 
the TTP tools. For every type the following properties must be specified in the file: 

type.Length= 

This property specifies the length of the type for TTPplan, i.e. the amount of bits and 
bytes that the type uses for message transmission. The syntax is [bytes][:bits], so 
for example 2 means 2 bytes, :10 means 10 bits and 1:2 means one byte plus 2 bits. 
The reason for this exact specification down to single bits is to enable the user to 
avoid any waste of bandwidth. For example a boolean value this way only takes one 
bit and for a 12 bit value from an A/D converter only those 12 bits are allocated 
within a message to transfer the value on the TTP bus. 

type.Category= 

This property specifies the category of the type for TTPplan. Valid categories are: 

• INT: Used for signed integer values. 

• UINT: Used for unsigned integer values. 

• REAL: Used for floating point values. 

type.CTypeLength 
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This property specifies the length of the type for the C programming language, i.e. it 
is equal to the value returned by sizeof(). 

type.CTypeDef 

This property lets the user specify the C type definition. 

The following is the type mapping that the file types.properties contains by 
default: 

short.Length=2 
short.Category=INT 
short.CTypeLength=2 
short.CTypeDef=short int 

boolean.Length=1 
boolean.Category=UINT 
boolean.CTypeLength=1 
boolean.CTypeDef=unsigned char 

byte.Length=1 
byte.Category=UINT 
byte.CTypeLength=1 
byte.CTypeDef=unsigned char 

int.Length=4 
int.Category=INT 
int.CTypeLength=4 
int.CTypeDef=long int 

long.Length=4 
long.Category=INT 
long.CTypeLength=4 
long.CTypeDef=long int 

float.Length=4 
float.Category=REAL 
float.CTypeLength=4 
float.CTypeDef=float 

double.Length=8 
double.Category=REAL 
double.CTypeLength=8 
double.CTypeDef=double 

char.Length=1 
char.Category=INT 
char.CTypeLength=1 
char.CTypeDef=unsigned char 

3.6 Property File for Specification beyond TDL 

This section contains a list of all the various properties that need to be specified in a 
separate file in addition to the TDL modules. For every item a description is provided 
together with an explanation why it is needed. An example property file for the demo 
application that is filled with proper values can be found in section 4.2.2 below. 
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The format of the property file is a standard Java property file as used by the class 
java.util.Properties. It is a text file with name-value pairs separated by a = 
symbol. The file is required to be named TTPPlatform.properties and has to be 
placed in the directory that is specified as destination directory when calling the TDL 
compiler. 

Program and File Location Parameters 

The plugin needs a number of files and executables for proper operation. The 
following properties tell the plugin where to find those resources. 

TTPPlanLocation= 

The value of this property must contain the path to the executable of the batch 
version of TTPplan. Typically the file is located at 
C:\TTTech\TTPplan\4.4\TTPplan_batch.exe. 

TTPBuildLocation= 

This property specifies the location where the plugin can find the batch version of 
TTPbuild. By default this file is installed at 
C:\TTTech\TTPbuild\4.4\TTPbuild_batch.exe. 

CMDLocation= 

The value of this property must contain the path to the executable cmd.exe, which is 
the command line interpreter of the Windows operating system. It is needed by the 
plugin for the execution of batch files such as the one that handles the compilation of 
a node. Typically this file is located at C:\windows\system32\cmd.exe. 

ResourceDirectory= 

Unlike the last properties this is a path to a directory and not to a file. The following 
files come with the plugin in the directory resource and must be placed somewhere 
on the local system: 

• main.c is a C code file that contains some standard initialization routines for 
nodes of the TTP cluster and is originally provided by TTTech as part of the 
demo application for the TTP tools.  

• make.bat is a batch script that controls the invocation of the Windriver Diab C 
compiler that compiles and links the source code for every node. 

• prj_setup.bat is a helper file to make.bat. 

• types.properties is a Java property file that specifies the type mapping of 
TDL types to types in C and the TTP tools and contains default values for all 
standard TDL types. 

Plugin Control Parameters 

LastModule= 

This property is needed to tell the plugin the name of the last module that is passed 
to the TDL compiler as a command line parameter. All modules of the distributed 
application have to be passed at once when calling the compiler at the command line. 
The plugin needs to have them all compiled and available before it can start 
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processing them and as this data is not available through the plugin interface of the 
compiler, the plugin needs to cache all of them until the last module is compiled. To 
know what the last module is it compares its name to the value of this property. 

FilesToCopyForEachNode= 

With this property a number of files can be specified that will be copied from the 
destination directory, which was passed to the TDL compiler, to the directory of every 
node that contains all files that will later be compiled for it. An example for such files 
would be driver code for sensor readings and actuator updates that can be used 
identically for each node and so only have to be created and maintained in a single 
file. It is optional whether to use this parameter or not as driver code can as well be 
included in the functionality code file for every module. 

TTP Tools Parameters 

ClusterName= 

This value defines the name of the cluster that will subsequently be used in the TTP 
tools. This also influences the file name of the cluster database created by TTPplan. 

TransmissionSpeed= 

This entry specifies the transmission speed on the TTP bus in kilobits per second. The 
value may be up to 5000. The recommended value is the maximum of 5000 as this 
gives the cluster schedule algorithm the highest degree of freedom and makes it 
easier to schedule the messages. Consequently it also simplifies the finding of a task 
schedule for single nodes and increases the probability that a schedule is found that 
conforms to the FLET property of TDL. 

Distribution Parameters 

TDLModule1.Node=Node1:Node2 
TDLModule2.Node=Node3 

This property consists of the name of a TDL module followed by the ending .Node. 
The value indicates on which node the module should be executed. The value can 
contain the name of a single node or multiple nodes separated by a colon. Specifying 
multiple nodes here results in replicated execution of the module on these nodes. The 
assignment of modules to nodes also serves for getting a list of all nodes the cluster 
consist of, as this is specified nowhere else. So every usage of a new name of a node 
implicitly creates one. 

Fault Tolerance Parameters 

TDLModule1.RDA= 

This property is only needed for modules that are replicated by an assignment to 
more than one node. When a module is executed on more than one node, the values 
it produces might be different due to a failure in for example either the node's 
hardware, operating system or the communication subsystem. Therefore a so-called 
replica-deterministic agreement algorithm must be specified, that integrates the 
possibly different values of a message to a single one that is consistent throughout 
the whole system. The value of this property is directly passed to TTPplan and only 
the following strings are valid as they represent different RDA algorithms [6]: 
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RD_1_valid, RD_Add, RD_Average, RD_M_Vote and RD_Piecewise. The RD_1_valid 
algorithm picks any valid value. RD_Add adds the value of all valid values of the 
replicated modules. RD_Average calculates the average of all valid values. RD_M_Vote 
stands for a majority vote algorithm that picks the value that the majority of the 
replicas produce. RD_Piecewise is used for structured data types and enables the 
application of different RDA algorithm to every element. As structured data types are 
not supported by the plugin tool chain this algorithm cannot be used. 

TDLModule.ReintegrationType= 

Reintegration occurs after the failure of a node. In case of a transient failure the node 
might be fully functioning after a short amount of time and ready for operation again. 
A permanent failure might require the repair or replacement of the node. In both 
cases the node must be reintegrated into the running cluster. This can be done by 
resetting the whole cluster by restarting all nodes. In safety critical application this is 
often not an option and it is required that a node performs reintegration while the 
cluster is running. Reintegration is specified on TTP subsystem level. With this 
property the user can decide whether a module should perform reintegration or not. 
This setting is necessary for all modules. There are two valid strings for this setting: 
Reinit_Reintegration and No_Reintegration. Reinit_Reintegration tells the 
plugin to perform reintegration into the running cluster whereas when specifying 
No_Reintegration this does not happen and the TDL module only continues working 
when the whole cluster is reset. 

TDLPublicOutputPort.ChannelRedundancy= 

This property must be set for every output port of a public task. These are exactly 
the ports for which messages on the TTP bus are generated. The TTP bus has two 
channels that can be used redundantly for improved safety and fault tolerance or 
independently for maximized data throughput. The value of this property can be 
either 1 or 2. 1 causes the message to be transmitted only on one channel of the TTP 
bus and 2 triggers the redundant transmission of the message. 

3.7 Implementation of the TTP TDL Plugin 

This section explains step-by-step what the TDL TTP plugin for creating code for the 
TTP platform does. It describes how the generation of the scripts for TTPplan and 
TTPbuild is done, how the glue code is generated and how all files are compiled and 
linked together to get a working application binary. 

Execution Environment 

The TDL plugin implementation requires a number of tools for proper operation. This 
section lists those tools and also contains information on the exact version that was 
used for the development of the plugin. Other versions might work as well, but as 
features and functions might change this cannot be guaranteed. 

The plugin is implemented as a set of Java classes under the Java Development Kit 
(JDK) version 1.4.2. Therefore it needs a Java Runtime Environment (JRE) that is 
able to execute code developed with this version of the JDK. 

The version of the TDL compiler used is a development version from April 2004. It 
contains only basic support for distribution and will certainly be developed further. 
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The version of the TTP tool suite by TTTech used for the plugin development is 
release R6.3 from December 2003. It contains TTPplan version 4.4, TTPbuild version 
4.4, TTPload version 5.4, TTPview version 5.10 and a version of TTPos for the 
MPC555 platform with TTPChip AS8202 in version 4.4. The tools must be installed 
with valid installation keys. It is important to properly customize the file mysetup.bat 
that is typically located in C:\TTTech\BSP. Most importantly this file contains the 
path to the C compiler and if not set properly the plugin is unable to invoke the 
compilation of files. 

As C compiler the Diab C/C++ Compiler for PowerPC in version 5.0 by Windriver was 
used. This compiler is recommended by TTTech and also shipped together with their 
development hardware. It requires a valid license. During installation a lot of 
questions concerning the hardware target are asked. It is not necessary to answer 
them correctly as the batch files for compilation overrule those settings anyway. 

The hardware platform used for development was a TTP development cluster by 
TTTech that consisted of four TTP PowerNodes PN212 and a TTP MonitoringNode. 

The plugin only works under Microsoft Windows despite the fact that it is a Java 
program. The reason is that the TTP tools and also the batch files for compilation that 
are included only work on Windows and to date there is no version for other 
operating systems available. 

 

Figure 19 Plugin Class Diagram 
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3.7.1 Classes 

All classes the plugin consists of are contained in the Java package 
emcore.tools.tdlc.platform.ttp. Figure 19 presents all classes and their relations 
to each other. It illustrates that TTPPlatform is the main class that coordinates and 
controls the generation process. The decomposition of the plugin is mainly driven by 
the structure and type of the output and resulted in three classes TTPplanScript, 
TTPbuildScript and TTPGlueCode for creating scripts for TTPplan and TTPbuild and 
generating the glue code that lets the functionality code interface with the TTP 
platform. 

In the following all Java classes of which the plugin consists of are listed and their 
purpose and function is described. 

TTPPlatform 

 

Figure 20 TTPPlatform Class Diagram 

This class implements interface Platform and represents the core of the TDL 
compiler plugin for integration with TTP. All internal and external activities for 
generating binaries for the TTP platform are coordinated by the implementation of 
method emitCode. The name of this class must be specified with option –platform of 
the TDL compiler command line interface in order to activate this plugin.  

TTPMessage 

 

Figure 21 TTPMessage Class Diagram 

This class represents a message on the TTP bus and is instantiated and used by class 
TTPPlatform. A TTPMessage object is a container for message attributes. It provides 
getter methods to access the attributes and does not do further calculations. 
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TTPplanScript 

 

Figure 22 TTPplanScript Class Diagram 

This class is a wrapper for generating TTPplan scripts that can be passed as 
argument to TTPplan in order to generate a valid object model and eventually the 
cluster communication schedule. The class provides a number of methods for 
defining the TTPplan object model by creating objects and links between them and 
specifying their attributes. A description of all relevant entities can be found in 3.5.1. 
Furthermore it has a method for obtaining the generated script. 

TTPbuildScript 

Figure 23 TTPbuildScript Class Diagram 
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This class is a wrapper for generating TTPbuild scripts. The two TTP tools are very 
similar regarding their programming interface and so this class is very much like 
class TTPplanScript, with the difference that it is designed to create an object 
model for TTPbuild. A list of the relevant entities can be found in 3.5.2.  

The wrapper classes for TTPbuild and TTPplan do not only map a method call to a 
single instruction in the script for the tools, but also do some processing. For 
example when the method createTask is invoked, also links are generated to link 
tasks to a subsystem and an application mode. The idea is to provide a convenient 
and powerful interface to simplify the usage for class TTPPlatform. 

TTPGlueCode 

This class generates the C glue code for every node. The glue code acts as a 
middleware layer between the TTP platform, which mainly consists of the operating 

system TTPos and the FT-Com layer, and the functionality code for tasks and drivers 
that are provided by the user in a standardized form. It also contains automatically 
generated code for the E machine-like tasks that handle the reception of bus 
messages and the execution of drivers. The class has methods for adding tasks, 
sensors, actuators and messages the E machine-like tasks have to retransmit. It also 
provides a method to obtain the generated C code. 

 

Figure 24 TTPGlueCode Class Diagram 

TTPGlueCodeEMachine 

Figure 25 TTPGlueCodeEMachine Class Diagram 

This is a helper class for TTPGlueCode and is instantiated and maintained by it. Its 
purpose is to collect lines of code that belong to the code of the E machine-like tasks. 
This is necessary because these tasks typically contain lines of code for different 
modules and there may also be multiple E machine-like tasks for different 
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frequencies. Every instance of this class represents a single E machine-like task and 
has a method to return the appropriate code to class TTPGlueCode. 

TTPProperties 

 

Figure 26 TTPProperties Class Diagram 

This class handles the access to the property file that contains specifications in 
addition to the TDL modules. It is instantiated by an instance of the TTPPlatform 
class with the name of the property file and then provides access to it including error 
handling for non-existent properties. 

TTPTypeMapping 

 

Figure 27 TTPTypeMapping Class Diagram 

This class handles the mapping of TDL types to types in C and types specific to the 
TTP tools. It is instantiated with the directory where the external file 
types.properties is located, which contains a mapping for every standard TDL type 
and also gives the user the ability to alter the mapping or to define custom types. 
The class provides four methods for getting the properties of a TDL type. 

 

Figure 28 TTPAuxiliary Class Diagram 
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TTPAuxiliary 

This is an auxiliary class which serves other classes with objects that are static 
throughout the whole plugin lifetime. It provides access to the destination directory 
and the type mapping class. Furthermore it is used to cache all modules that are 
processed by the TDL compiler, as the plugin needs to have all compiled modules 
available before it can start generating scripts and code. 

Executer 

 

Figure 29 Executer Class Diagram 

This class provides the ability to execute external programs from within Java. It also 
takes care of the standard and error output and the return value of a command. The 
call method is called with the path and name of the executable, optional environment 
variables and the working directory. It returns an instance of the class 
ProcessOutput described below. 

ProcessOutput 

 

Figure 30 ProcessOutput Class Diagram 

This is a helper class for class Executer. It is used to collect the standard and error 
output of an external program execution as well as the exit value of it and provides 
methods to read this data in a convenient way. 

 

Figure 31 Tools Class Diagram 
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Tools 

This is a helper class that provides static methods for copying files, reading and 
writing a String to a file and a method to replace all occurrences of a string in 
another string. 

3.7.2 Program Flow 

This section describes step-by-step what the plugin does. For better readability the 
flow of actions is divided in smaller parts that follow each other. 

Initialization 

After the plugin is called by the TDL compiler via method emitCode, the property file 
is read and the value of LastModule is compared to the name of the current module. 
The plugin has to wait until the last module is compiled by the compiler before it can 
start its work. All module objects are stored by the TTPAuxiliary class in order to be 
available for every instance of the plugin invoked during the compilation process. 

When the last module is reached, the plugin starts with reading the type mapping 
property file and instantiating the corresponding class TTPTypeMapping. It also 
processes the destination directory and sets the appropriate value in the 
TTPAuxiliary class. All files generated by the plugin are stored in the subdirectory 
TTP which is created in the destination directory that is passed by the compiler as 
parameter of the emitCode method. 

TTPplan Script Generation 

In order to generate the script for TTPplan, the plugin first needs to determine a list 
of all messages that need to be transferred via the TTP bus and creates subsystems 
for them. As mentioned earlier, TTP subsystems can be mapped to TDL modules and 
so for every module that sends a message a subsystem is created. Then every 
module is analyzed with respect to public ports for which a message has to be 
created with the corresponding TTP type that can be found through class 
TTPTypeMapping with the TDL type name. Furthermore the period of each message is 
computed. Also other properties such as the type of RDA algorithm to be used and 
channel redundancy are processed. During those actions also the shortest message 
period is determined that is needed to specify the length of a TDMA round of the 
cluster. 

The next important step is to create hosts and to link them to the subsystem. For 
this purpose the information which module runs on which host is necessary. This 
mapping is obtained by reading the property file. All modules are iterated and the 
[module].Node entry in the property file is analyzed. This way also the list of nodes 
in the cluster is determined. The information gained is used to create hosts, link 
them to slots and the cluster object and assign subsystems to them. Furthermore 
during this iteration the TTPbuild script generation is invoked with a list of modules 
each node has to execute. Finally the script is written to a file for later processing by 
TTPplan. 

A detailed description of how to map the TDL modules to the TTPplan object model 
can be found in 3.5.1. 



 69 

TTPbuild Script and Glue Code Generation 

For each host a dedicated script for TTPbuild and glue code is generated. The data 
needed for this step consist of the name of the host, a list of modules the host should 
execute, the destination directory and the filename of the cluster database.  

First all necessary classes, namely TTPbuildScript and TTPGlueCode, are initialized. 
Next an iteration over all modules of the host is performed. The first action in this 
iteration is copying the files <module>.h and <module>.c to the directory of the host. 
Those files must exist and must contain the header and body file of the functionality 
code for the TDL module. The name of the header file is also passed on to the glue 
code generator class to add an appropriate include statement to the glue code. 
What happens next is to carry out all steps to realize the mapping of TDL modules to 
the TTPbuild object model and the generation of the glue code that are described in 
3.5.2 and 3.5.3 respectively. The plugin does this by calling the appropriate functions 
of the classes TTPbuildScript and TTPGlueCode. Finally the glue code and the script 
for later execution with TTPbuild are stored in the destination directory of the host. 

Script Execution and Compilation 

After the generation of the scripts for TTPplan and TTPbuild is completed, first the 
batch version of TTPplan is called with the appropriate script as parameter. The tool 
outputs the MEDLs for each host and a cluster database file containing the cluster 
schedule. Successful execution of the tool is checked by analyzing the exit value, 
which should be zero, and additionally by checking if the output contains the string 
"Schedule successfully made". Otherwise the plugin stops with an error message. 
For debugging reasons the output of the execution of the tools is always outputted to 
the console. 

Next TTPbuild is called once for every node with the appropriate script generated by 
the plugin as parameter. The success of the execution is again checked by analyzing 
the exit value and checking the output for strings that indicate a successful run of the 
tool. TTPbuild creates three files for every host that are written to the corresponding 
host directory: ttpc_ftl.c, ttpc_msg.h and ttpos_conf.c. Those files contain the 
static schedule table, in which all task invocations are specified, and the fault tolerant 
communication layer that acts as an interface between tasks and messages on the 
TTP bus. 

Before the Diab C compiler can be invoked, some additional files have to be copied 
from the ResourceDirectory specified in the property file. Two of them are the files 
make.bat and prj_setup.bat which were provided by TTTech for the compilation of 
applications developed with their tools. Furthermore the file main.c, which contains 
some initialization routines, needs to be copied to every node directory. main.c 
needs to be patched in order to contain the name of the application mode that is 
used throughout the system. To work properly the compiler script needs a valid 
mysetup.bat file that is typically located in the directory C:\TTTech\BSP, which most 
importantly contains the path to the compiler binaries. Finally the plugin invokes the 
compiler for every host, checks if the compiled and linked binary was created 
successfully and copies the file to the download database directory created by 
TTPplan before. At this point all what is left to do for the user is to start TTPload and 
download the application to the TTP cluster hardware. 
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Chapter 4 

Demo Application 

4.1 Experimental Setup 

The demo application that is used to demonstrate the application of the developed 
TDL-TTP tool chain is described in this section. Although it is a rather simple example 
it is sophisticated enough to show basic fault tolerance behavior such as replication 
and redundancy. Furthermore the hardware and software environment used for the 
demo is described. 

Hardware Setup 

 

Figure 32 TTP Development Cluster by TTTech 

The hardware platform used for the demo application is a TTP development cluster 
provided by TTTech. Figure 32 shows the setup with the actual cluster on the left, the 
monitoring node in the middle a standard laptop PC on the right. The cluster consists 
of a power supply and a number of TTP Powernodes. For the demo application four of 
these nodes with the model number PN212 were used. The monitoring node acts as a 
gateway between the TTP bus and standard Ethernet and is used for programming 
the host CPUs and the TTP chips and for monitoring all data on the TTP bus at 
runtime.  

The TTP-Powernode is a board that integrates a powerful Motorola MPC555 CPU with 
a TTP-Chip C2 communication controller, which is an implementation of the TTP/C 
protocol in silicon. [12] contains details of the board layout and functioning. 



 71 

Software Setup 

The software setup consists of the tools listed in 3.7 above, that are required for the 
TTP plugin for the TDL compiler to run. All tools were installed on a Windows XP 
system. 

Demo Application 

The demo application is meant to be a simple demonstration that the TDL plugin for 
the TTP platform described in Chapter 3 actually works as intended. It uses a number 
of modules that are distributed on four nodes and that use tasks, sensors and 
actuators. The goal was to use all fault tolerance mechanisms described in 3.4. 

 

Figure 33 Demo Application Data Flow Diagram 

The functionality of the demo application consists of three independent counters that 
simply count upwards. The four nodes are divided into two producer and two 
consumer nodes. Figure 33 shows the data flow between the nodes and the 
associated modules. Each producer - denoted by Node1 and Node2 in the figure - 
generates a counter value and an additional counter called Counter1 is replicated on 
both producer nodes. The consumer nodes Node3 and Node4 receive the counters. 
Node3 receives the counter value Counter2A produced by Node1 and Node4 receives 
the counter from the second producer node denoted by Node2. The replicated counter 
Counter1 is received on both consumer nodes and in addition both are aware of the 
number of operational replicas. The values of the counters are indicated by LEDs on 
each node and the actual values can also be monitored on a PC.  

Figure 34 is a symbolic picture of the TTP Powernode with a description of the LEDs. 
As shown in the figure, five LEDs are available to the application on the host CPU, 
whereas the other two green LEDs are reserved to display the status of the TTP 
communication controller. The demo application uses the two yellow HOST4 and 
HOST5 LEDs to display the current value of the counter. The LEDs blink with a fixed 
period and the phase of the blinking corresponds to the current value. The idea is to 
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see that the values on different nodes are the same when the blinking of the LEDs is 
in sync. The left LED of every node indicates the value of the replicated counter value 
whereas the right LED indicates the other counter value that is produced or 
consumed by a node with a different blinking period. So when all nodes of the cluster 
are started at the same time initially all left LEDs of the nodes and all right LEDs are 
in sync and will stay in sync unless one of the producer nodes is reset, which also 
results in a reset of the counter value. On the consumer nodes also the red LEDs 
HOST2 and HOST3 are used to indicate the status of the replicas of the replicated 
counter. The two LEDs are used as alarm or warning LEDs that indicate the failure of 
one replica with one red LED and the failure of both with two red LEDs switched on. 

 

Figure 34 TTP Powernode LEDs 

4.2 Implementation 

This section is dedicated to the implementation details of the demo application. 
Everything from the TDL modules and property file entries, the generated object 
model and bus and task schedules to the generated glue code is presented and 
discussed. 

4.2.1 TDL Code 

In the following the TDL code and the corresponding functionality code of the demo 
application is presented and explained. It consists of five TDL modules that are split 
in three producer and two consumer modules. 
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Producer Modules 

The producer modules generate a counter value and indicate that value by means of 
an actuator which is a blinking LED as described above. The three modules are very 
similar. There are only differences in the name of the module, the counter value and 
the functionality code calls. As example here is the code of module Producer1.tdl: 

module Producer1 { 
 
  actuator 
    short YellowLED1 uses setYellowLED1; 
 
  public task Produce1 [100us] { 

    output 
      short Counter1 := 0; 

    uses produce1Impl(Counter1); 

  } 
 
  start mode DemoMode [4000us] { 

    task 
      [1] Produce1(); 

    actuator 
      [1] YellowLED1:=Produce1.Counter1; 

  } 

} 

This module consists of an actuator for driving the LED, a task that actually produces 
that value and increments it and a mode that invokes the task and the actuator 
update. The keyword public indicates that the task output ports can be accessed by 
other modules and therefore have to be transferred over the TTP bus. 

Drivers like setYellowLED1 and task code like produce1Impl have to be provided in 
the functionality code file. The file that contains them must be called Producer1.c 
with a corresponding header file Producer1.h. Producer1.c looks like this: 

#include "drivers.h" 
 
void produce1Impl(short int *value) { 

  value = value + 1; 

} 

As can be seen the task simply adds 1 to the counter that is passed as a reference. 
The functionality code for the actuator is contained in the referenced file drivers.h, 
which contains all drivers for all modules. The following is an excerpt of the file 
drivers.c that illustrates the relevant functions for the producer module: 

#include "TTPos.h" 
 
void setYellowLED1(short int value) { 
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  LED (LED_YELLOW_1, value & 0x100); 

} 
 
void setYellowLED2(short int value) { 

  LED (LED_YELLOW_2, value & 0x200); 

} 

This code realizes the blinking of the LEDs according to the value of the counter. The 
header file TTPos.h provides access to the LED functions of the operating system. 

Consumer Module 

The consumer module receives the counter values from the bus by accessing output 
ports of modules located on a remote node by using the import statement with the 
corresponding modules. In the following is the TDL code for one of the two consumer 
modules ConsumerA.tdl is presented: 

module ConsumerA { 
 
  import Producer1; 
  import Producer2A; 
 
  sensor 

    short Counter1MessageStatus uses REPL_Counter1; 
 
  actuator 

    short YellowLED1 uses setYellowLED1; 
    short YellowLED2 uses setYellowLED2; 
    short RedLEDs uses setRedLEDs; 
 
  start mode DemoMode [4000us] { 

    actuator 

      [1] YellowLED1 := Producer1.Produce1.Counter1; 
      [1] YellowLED2 := Producer2A.Produce2A.Counter2A; 
      [1] RedLEDs := Counter1MessageStatus; 

    } 

} 

As can be seen the consumer modules do not contain any task. The sensor value and 
values from other imported modules are directly used as input for actuator updates. 
The message status of Counter1 indicates how many replicas producing this message 
are present. This value is accessed by the special driver REPL_Counter1 that does 
not require functionality code as it is processed in a special way by the plugin as 
described in 3.5.3. 

The drivers for the actuators are contained in the file drivers.c. In addition to the 
two drivers whose code is denoted above, a driver for the red LEDs is provided: 

void setRedLEDs(short int value) { 
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  if (value > 1) 
    { 
      LED_OFF (LED_RED_1); 
      LED_OFF (LED_RED_2); 
    } 
  else if (value) 
    { 
      LED_ON (LED_RED_1); 
      LED_OFF (LED_RED_2); 
    } 
  else 
    { 
      LED_ON (LED_RED_1); 
      LED_ON (LED_RED_2); 
    } 
} 

This function implements the red warning LEDs that indicate the failure of one or two 
replicas of the Producer1 module. 

4.2.2 Property File 

A Java property is used for specifying distribution and fault-tolerance aspects and 
platform specific details. Basically it contains all properties that need to be known in 
order to generate a distributed, fault-tolerant application for the TTP platform but 
cannot be determined from the TDL modules. All properties and the syntax of the file 
are explained in 3.6. The filename has to be TTPPlatform.properties and the file 
must be in the destination directory specified when calling the TDL compiler. 

TTPPlanLocation=C:\\TTTech\\TTPplan\\4.4\\TTPplan_batch.exe 
TTPBuildLocation=C:\\TTTech\\TTPbuild\\4.4\\TTPbuild_batch.exe 
CMDLocation=C:\\windows\\system32\\cmd.exe 
ResourceDirectory=C:\\Demo\\resource 

These properties tell the plugin where to find required files and executables. 

LastModule=ConsumerB 

The last module can be any module that is later passed to the compiler as the last 
one in the list of modules to be compiled at the command line. 

FilesToCopyForEachNode=drivers.h:drivers.c 

As mentioned above, the demo application uses the same driver code in the files 
drivers.h and drivers.c for all modules. These files must be specified to make the 
plugin copy them to each node directory for compilation and linking. 

ClusterName=DemoCluster 

It is required to specify a name for the cluster. 

TransmissionSpeed=5000 

For the transmission speed on the TTP bus the maximum value is used. This gives 
the bus scheduler more freedom to find a correct schedule for the application. 
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Producer1.Node=Node1:Node2 
Producer1.RDA=RD_1_valid 
Producer1.ReintegrationType=Reinit_Reintegration 

The module Producer1 is specified to be executed redundantly on two nodes. This 
also makes it necessary to choose an RDA algorithm. RD_1_valid just picks the first 
valid message that contains a value produced by the module. For the reintegration 
type we request that the module tries to reintegrate by reinitialization. 

Producer2A.Node=Node1 
Producer2A.ReintegrationType=Reinit_Reintegration 

Producer2B.Node=Node2 
Producer2B.ReintegrationType=Reinit_Reintegration 

ConsumerA.Node=Node3 
ConsumerA.ReintegrationType=Reinit_Reintegration 

ConsumerB.Node=Node4 
ConsumerB.ReintegrationType=Reinit_Reintegration 

Also all other modules must be distributed among the nodes. Note that for example 
on Node1 two modules are executed. 

Counter1.ChannelRedundancy=2 
Counter2A.ChannelRedundancy=2 
Counter2B.ChannelRedundancy=2 

For all public output ports of tasks the channel redundancy is set to 2, so that both 
TTP channels are used for transmission. 

4.3 Execution 

In the following the output of the execution of the TDL compiler and the plugin for 
the TTP platform including the output of invoked TTP tools is presented. 

4.3.1 Compiler Invocation 

The TDL compiler is invoked for the demo application with the following command: 

java emcore.tools.tdlc.Compiler –d . –platform 
  emcore.tools.tdlc.platform.ttp.TTPPlatform Producer1.tdl  
  Producer2A.tdl Producer2B.tdl ConsumerA.tdl ConsumerB.tdl 

As destination directory the current directory is used. This is also the directory where 
the property file named TTPPlatform.properties must be located. As usual when 
calling java programs the file Compiler.class is located in the directory 
\emcore\tools\tdlc relative to the current directory or a location listed in the 
CLASSPATH environment variable. This also analogously applies to the file 
TTPPlatform.class. The TDL module files must be located in the current directory 
too. The order in which modules are passed at the command line does not matter 
except for the requirement that modules that provide functionality to other modules 
need to precede modules that use it. The only requirement is that the last module is 
the one that is specified as LastModule in the property file. 
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4.3.2 TTPplan Script 

TTPplan is the first tool the plugin creates a script for and executes it. Below the 
method calls of the wrapper class TTPplanScript and the generated script for the 
demo application together with some remarks are presented. It is the complete script 
without any modifications. 

TTPplanScript ttpPlan = new TTPplanScript("DemoCluster", 
"C:\Demo\.\TTP\DemoCluster.cdb"); 

TTA.Application_Command.run ('File.New', 'DemoCluster') 

The beginning of the script creates a new cluster database file. 

ttpPlan.createClusterMode("DemoMode_clustermode"); 
TTA.Cluster_Mode.define ('DemoMode_clustermode', i_frame_factor = 2) 
TTA.Cluster_Mode_after_Cluster_Mode.add (TTA.Cluster_Mode.instance ('DemoMode_clustermode'), 

TTA.Cluster_Mode.instance ('Startup_Mode')) 
TTA.Cluster_Mode_after_Cluster_Mode.link ('DemoMode_clustermode', 'Startup_Mode').set 

(request_mode_change = '1', raw=1) 
TTA.Cluster_Mode_of_Cluster.add (TTA.Cluster_Mode.instance ('Startup_Mode'), 

TTA.Cluster.instance ('DemoCluster')) 

ttpPlan.linkClusterClusterMode("DemoMode_clustermode"); 
TTA.Cluster_Mode_of_Cluster.add (TTA.Cluster_Mode.instance ('DemoMode_clustermode'), 

TTA.Cluster.instance ('DemoCluster')) 

This first block deals with the creation of the cluster mode for the TDL mode in the 
modules. In addition TTPplan requires creating a startup mode as described in 3.5.1. 

ttpPlan.createSubsystem("Producer1", "Reinit_Reintegration"); 
TTA.Subsystem.define ('Producer1', reintegration_type = 'Reinit_Reintegration', raw=1) 

ttpPlan.createMessage("Counter1", 0, "RD_1_valid"); 
TTA.Message.define ('Counter1', agreement = 'RD_1_valid', init_value = '0', raw=1) 

ttpPlan.linkMessageMode("DemoMode_clustermode", "Counter1", 4000, 2); 
TTA.Cluster_Mode_uses_Message.add (TTA.Cluster_Mode.instance ('DemoMode_clustermode'), 

TTA.Message.instance ('Counter1')) 
TTA.Cluster_Mode_uses_Message.link ('DemoMode_clustermode', 'Counter1').set ( d_period = 4000, 

redundancy_degree = 2) 

ttpPlan.linkSubsystemMessage("Producer1", "Counter1"); 
TTA.Subsystem_sends_Message.add (TTA.Subsystem.instance ('Producer1'), TTA.Message.instance 

('Counter1')) 

ttpPlan.createMessageType("short", "2", "INT", "short int", "2"); 
TTA.Msg_Type_P.define ('short', length = '2', type_cat = 'INT', typedef = 'short int', 

type_length = '2', raw=1) 

ttpPlan.linkMessageMessageType("Counter1", "short"); 
TTA.Message_uses_Msg_Type.add (TTA.Message.instance ('Counter1'), TTA.Msg_Type_P.instance 

('short')) 

This block defines the subsystem Producer1 for the corresponding module. The 
messages for the module are created and linked to the appropriate message type 
and subsystem. Note that the message type short is also created on first usage. 
With the link between a message and the cluster mode also the attributes for the 
message period and its redundancy degree are determined. 

ttpPlan.createSubsystem("Producer2A", "Reinit_Reintegration"); 
TTA.Subsystem.define ('Producer2A', reintegration_type = 'Reinit_Reintegration', raw=1) 

ttpPlan.createMessage("Counter2A", 0); 
TTA.Message.define ('Counter2A', init_value = 0) 
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ttpPlan.linkMessageMode("DemoMode_clustermode", "Counter2A", 4000, 2); 
TTA.Cluster_Mode_uses_Message.add (TTA.Cluster_Mode.instance ('DemoMode_clustermode'), 

TTA.Message.instance ('Counter2A')) 
TTA.Cluster_Mode_uses_Message.link ('DemoMode_clustermode', 'Counter2A').set ( d_period = 4000, 

redundancy_degree = 2) 

ttpPlan.linkSubsystemMessage("Producer2A", "Counter2A"); 
TTA.Subsystem_sends_Message.add (TTA.Subsystem.instance ('Producer2A'), TTA.Message.instance 

('Counter2A')) 

ttpPlan.linkMessageMessageType("Counter2A", "short"); 
TTA.Message_uses_Msg_Type.add (TTA.Message.instance ('Counter2A'), TTA.Msg_Type_P.instance 

('short')) 

This block creates the subsystem, message and appropriate links for the Producer2A 
module. 

ttpPlan.createSubsystem("Producer2B", "Reinit_Reintegration"); 
TTA.Subsystem.define ('Producer2B', reintegration_type = 'Reinit_Reintegration', raw=1) 

ttpPlan.createMessage("Counter2B", 0); 
TTA.Message.define ('Counter2B', init_value = 0) 

ttpPlan.linkMessageMode("DemoMode_clustermode", "Counter2B", 4000, 2); 
TTA.Cluster_Mode_uses_Message.add (TTA.Cluster_Mode.instance ('DemoMode_clustermode'), 

TTA.Message.instance ('Counter2B')) 
TTA.Cluster_Mode_uses_Message.link ('DemoMode_clustermode', 'Counter2B').set ( d_period = 4000, 

redundancy_degree = 2) 

ttpPlan.linkSubsystemMessage("Producer2B", "Counter2B"); 
TTA.Subsystem_sends_Message.add (TTA.Subsystem.instance ('Producer2B'), TTA.Message.instance 

('Counter2B')) 

ttpPlan.linkMessageMessageType("Counter2B", "short"); 
TTA.Message_uses_Msg_Type.add (TTA.Message.instance ('Counter2B'), TTA.Msg_Type_P.instance 

('short')) 

This block creates the subsystem, message and appropriate links for the Producer2B 
module. 

ttpPlan.createCluster(2000, "5000", "big_32_endian"); 
TTA.Cluster.define ('DemoCluster', byte_order = 'big_32_endian', tr_period = '2000', 

transmission_speed = '5000', raw=1) 

This command creates the cluster object with transmission speed according to the 
property file and sets the length of the TDMA round (tr_period) according to the 
shortest message period. 

ttpPlan.createHostAndSlot("Node1", 1, "TTTech_C2"); 
TTA.Host.define ('Node1', mux_round = '1', mux_period = '1', serial_number = '1', 

controller_type = 'TTTech_C2', raw=1) 
TTA.Slot.define ('Node1_slot') 
TTA.Host_uses_Slot.add (TTA.Host.instance ('Node1'), TTA.Slot.instance ('Node1_slot')) 

ttpPlan.linkHostClusterMode("Node1", "DemoMode_clustermode"); 
TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ('Node1'), TTA.Cluster_Mode.instance 

('DemoMode_clustermode')) 
TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ('Node1'), TTA.Cluster_Mode.instance 

('Startup_Mode')) 
TTA.Host_in_Cluster_Mode.link ('Node1', 'Startup_Mode').set (may_request_mode_changes = 

'DemoMode_clustermode', raw=1) 

ttpPlan.linkHostCluster("Node1"); 
TTA.Host_in_Cluster.add (TTA.Host.instance ('Node1'), TTA.Cluster.instance ('DemoCluster')) 

ttpPlan.linkHostSubsystemClusterMode("Node1", "Producer1", 
"DemoMode_clustermode"); 
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TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ('Node1'), TTA.Subsystem.instance 

('Producer1'), TTA.Cluster_Mode.instance ('DemoMode_clustermode')) 

ttpPlan.linkHostSubsystemClusterMode("Node1", "Producer2A", 
"DemoMode_clustermode"); 

TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ('Node1'), TTA.Subsystem.instance 
('Producer2A'), TTA.Cluster_Mode.instance ('DemoMode_clustermode')) 

This block of code creates a host object for Node1 together with a transmission slot 
for the node. Links have to be created between the host and the slot, the cluster, the 
cluster mode and the subsystems the host runs. 

ttpPlan.createHostAndSlot("Node2", 2, "TTTech_C2"); 
TTA.Host.define ('Node2', mux_round = '1', mux_period = '1', serial_number = '2', 

controller_type = 'TTTech_C2', raw=1) 
TTA.Slot.define ('Node2_slot') 
TTA.Host_uses_Slot.add (TTA.Host.instance ('Node2'), TTA.Slot.instance ('Node2_slot')) 

ttpPlan.linkHostClusterMode("Node2", "DemoMode_clustermode"); 
TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ('Node2'), TTA.Cluster_Mode.instance 

('DemoMode_clustermode')) 
TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ('Node2'), TTA.Cluster_Mode.instance 

('Startup_Mode')) 
TTA.Host_in_Cluster_Mode.link ('Node2', 'Startup_Mode').set (may_request_mode_changes = 

'DemoMode_clustermode', raw=1) 

ttpPlan.linkHostCluster("Node2"); 
TTA.Host_in_Cluster.add (TTA.Host.instance ('Node2'), TTA.Cluster.instance ('DemoCluster')) 

ttpPlan.linkHostSubsystemClusterMode("Node2", "Producer1", 
"DemoMode_clustermode"); 

TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ('Node2'), TTA.Subsystem.instance 
('Producer1'), TTA.Cluster_Mode.instance ('DemoMode_clustermode')) 

ttpPlan.linkHostSubsystemClusterMode("Node2", "Producer2B", 
"DemoMode_clustermode"); 

TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ('Node2'), TTA.Subsystem.instance 
('Producer2B'), TTA.Cluster_Mode.instance ('DemoMode_clustermode')) 

This block creates all necessary objects and links for Node2.  

ttpPlan.createHostAndSlot("Node3", 3, "TTTech_C2"); 
TTA.Host.define ('Node3', mux_round = '1', mux_period = '1', serial_number = '3', 

controller_type = 'TTTech_C2', raw=1) 
TTA.Slot.define ('Node3_slot') 
TTA.Host_uses_Slot.add (TTA.Host.instance ('Node3'), TTA.Slot.instance ('Node3_slot')) 

ttpPlan.linkHostClusterMode("Node3", "DemoMode_clustermode"); 
TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ('Node3'), TTA.Cluster_Mode.instance 

('DemoMode_clustermode')) 
TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ('Node3'), TTA.Cluster_Mode.instance 

('Startup_Mode')) 
TTA.Host_in_Cluster_Mode.link ('Node3', 'Startup_Mode').set (may_request_mode_changes = 

'DemoMode_clustermode', raw=1) 

ttpPlan.linkHostCluster("Node3"); 
TTA.Host_in_Cluster.add (TTA.Host.instance ('Node3'), TTA.Cluster.instance ('DemoCluster')) 

ttpPlan.linkHostSubsystemClusterMode("Node3", "ConsumerA", 
"DemoMode_clustermode"); 

TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ('Node3'), TTA.Subsystem.instance 
('ConsumerA'), TTA.Cluster_Mode.instance ('DemoMode_clustermode')) 

This block creates all necessary objects and links for Node3. Note that here only one 
subsystem is linked according to the mapping in the property file. 

ttpPlan.createHostAndSlot("Node4", 4, "TTTech_C2"); 
TTA.Host.define ('Node4', mux_round = '1', mux_period = '1', serial_number = '4', 

controller_type = 'TTTech_C2', raw=1) 
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TTA.Slot.define ('Node4_slot') 
TTA.Host_uses_Slot.add (TTA.Host.instance ('Node4'), TTA.Slot.instance ('Node4_slot')) 

ttpPlan.linkHostClusterMode("Node4", "DemoMode_clustermode"); 
TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ('Node4'), TTA.Cluster_Mode.instance 

('DemoMode_clustermode')) 
TTA.Host_in_Cluster_Mode.add (TTA.Host.instance ('Node4'), TTA.Cluster_Mode.instance 

('Startup_Mode')) 
TTA.Host_in_Cluster_Mode.link ('Node4', 'Startup_Mode').set (may_request_mode_changes = 

'DemoMode_clustermode', raw=1) 

ttpPlan.linkHostCluster("Node4"); 
TTA.Host_in_Cluster.add (TTA.Host.instance ('Node4'), TTA.Cluster.instance ('DemoCluster')) 

ttpPlan.linkHostSubsystemClusterMode("Node4", "ConsumerB", 
"DemoMode_clustermode"); 

TTA.Host_runs_Subsystem_in_Cluster_Mode.add (TTA.Host.instance ('Node4'), TTA.Subsystem.instance 
('ConsumerB'), TTA.Cluster_Mode.instance ('DemoMode_clustermode')) 

This block creates all necessary objects and links for Node4.  

ttpPlan.getScript() 
TTA.Application_Command.run('Schedule.Make new schedule') 
TTA.Application_Command.run('Schedule.Make MEDLs') 
TTA.Application_Command.run('File.Save cluster as ...', 'C:\Demo\.\TTP\DemoCluster.cdb') 

The last block of code initiates the creation of the cluster schedule and the MEDLs. 
Finally the cluster database is written to file. 

TTPplan Results 

The complete generated object model is not easy to present here. It consists of the 
objects, links and attributes created by the script presented above and all default 
attributes of the objects and links. For this reason only key features of the object 
model will be presented here, most importantly the generated cluster schedule. 

Figure 35 illustrates the instances of the link that associates subsystems to hosts in a 

cluster mode. Hosts in context of the TTP tools are nodes of the distributed system. 
This is a good example to see that the specification in the property file, in this case 
the mapping of modules to nodes, is realized in the TTPplan object model. 

 

Figure 35 Mapping of Subsystem to Hosts in TTPplan 
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Figure 36 is a screenshot of the schedule editor of TTPplan showing the generated 
schedule for the demo application. It shows the slots of all hosts, each slot having a 
length of 500 micro seconds. The complete cluster cycle consist of two rounds, which 

results in eight slots per cluster cycle and exactly fills up the 4000 micro seconds 
mode period of the TDL mode. The messages Counter1, Counter2A and Counter2B 
are indicated by the various blue colored blocks. Note that the message Counter1 is 
sent by Node1 and Node2 because it is produced by a replicated module that is 
executed on both nodes. The upper part of the blocks symbolize channel A of the TTP 
bus, whereas the lower part symbolizes channel B. All blocks span over both parts, 
as the messages were all specified to be transferred on both channels of the bus. 

 

Figure 36 Demo Application Cluster Schedule 

4.3.3 TTPbuild Script 

The plugin creates a script for each node that is intended for the node design tool 
TTPbuild. Unlike TTPplan, here one script for every node is required. As a first 
example we will take a look at the complete script the plugin generates for Node1 of 
the demo application. 

TTPbuildScript ttpBuild = new TTPbuildScript("Node1", 
"C:\Demo\.\TTP\DemoCluster.cdb", "Node1.ndb "); 

TTA_Application_Command.run('File.New node ...', 'Node1', 'C:\Demo\.\TTP\DemoCluster.cdb') 
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The first command creates a new node database file. It is needed to specify the 
cluster database that was created by TTPplan before here and to select which node of 
the cluster should be designed. 

ttpBuild.setHardware("TTPpowernode_C2"); 
TTA.Host.customize ('Node1', node_config = 'TTPpowernode_C2', raw=1) 

ttpBuild.createApplicationMode("DemoMode", "DemoMode_clustermode"); 
TTA.Node.App_Mode.define ('DemoMode', maximum_interrupt_latency = '150 us', pos_synch_limit = 

'max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2, TTA.Cluster.tc_period * 0.0015)', 
neg_synch_limit = 'max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2, 
TTA.Cluster.tc_period * 0.0015)', neg_correction_limit = 'max ( 
TTA.Cluster.clock_sync.macro_tick_length / 1000 * 3, TTA.Cluster.tc_period * 0.002)', 
pos_correction_limit = 'max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 3, 
TTA.Cluster.tc_period * 0.002)', raw=1) 

TTA.Node.App_Mode_maps_to_Cluster_Mode.add (TTA.Node.App_Mode.instance ('DemoMode'), 
TTA.Cluster_Mode.instance ('DemoMode_clustermode')) 

This block of code sets the hardware configuration, creates an application mode and 
links it to the cluster mode that is already present in the object model. 

ttpBuild.createSubsystem("emachine"); 
TTA.Subsystem.define ('emachine') 

ttpBuild.createTask("emachine1", 75, "emachine", "DemoMode", 4000, 0, 
80); 

TTA.Node.App_Task.define ('emachine1', time_source = 'local_time', time_budget = '75', period = 
'4000', deadline = '80', phase = '0', raw=1) 

TTA.Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance ('emachine1'), 
TTA.Node.App_Mode.instance ('DemoMode')) 

TTA.Node.Subsystem_runs_Task.add (TTA.Subsystem.instance ('emachine'), 
TTA.Node.App_Task.instance ('emachine1')) 

This block deals with the creation of the E machine-like task that needs to have a 
subsystem and must be linked to the application mode. 

ttpBuild.createTask("Produce1", 100, "Producer1", "DemoMode"); 
TTA.Node.App_Task.define ('Produce1', time_source = 'local_time', time_budget = '100', raw=1) 
TTA.Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance ('Produce1'), 

TTA.Node.App_Mode.instance ('DemoMode')) 
TTA.Node.Subsystem_runs_Task.add (TTA.Subsystem.instance ('Producer1'), 

TTA.Node.App_Task.instance ('Produce1')) 

ttpBuild.linkMessage("Counter1", "Produce1", true, false); 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('Produce1'), TTA.Message.instance 

('Counter1'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('Produce1', 'Counter1').set (sends = 'yes', receives = 'no', 

raw=1) 

ttpBuild.linkMessage("Counter1", "emachine1", false, true); 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('emachine1'), TTA.Message.instance 

('Counter1'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('emachine1', 'Counter1').set (sends = 'no', receives = 'yes', 

raw=1) 

ttpBuild.createLocalMessageFromTo("Counter1_in", "short", 4000, 
"emachine1", "Produce1"); 

TTA.Message.define ('Counter1_in', d_period = 4000, init_value = 0) 
TTA.Message_uses_Msg_Type.add (TTA.Message.instance ('Counter1_in'), TTA.Msg_Type_P.instance 

('short')) 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('emachine1'), TTA.Message.instance 

('Counter1_in'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('emachine1', 'Counter1_in').set (sends = 'yes', receives = 

'no', raw=1) 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('Produce1'), TTA.Message.instance 

('Counter1_in'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('Produce1', 'Counter1_in').set (sends = 'no', receives = 'yes', 

raw=1) 
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This block of code handles the creation of the task Produce1. In order to maintain 
the FLET property of TDL, as discussed in 3.5, it is required that received messages 
from the bus pass the E machine-like task. This is realized by creating a local 
message Counter1_in from the E machine-like task and the task. The E machine-like 
task also has to receive the sent message of the task Produce1 because the actuator 
update code inside the E machine-like task needs access to the output port of the 
task. 

ttpBuild.createTask("Produce2A", 100, "Producer2A", "DemoMode"); 
TTA.Node.App_Task.define ('Produce2A', time_source = 'local_time', time_budget = '100', raw=1) 
TTA.Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance ('Produce2A'), 

TTA.Node.App_Mode.instance ('DemoMode')) 
TTA.Node.Subsystem_runs_Task.add (TTA.Subsystem.instance ('Producer2A'), 

TTA.Node.App_Task.instance ('Produce2A')) 

ttpBuild.linkMessage("Counter2A", "Produce2A", true, false); 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('Produce2A'), TTA.Message.instance 

('Counter2A'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('Produce2A', 'Counter2A').set (sends = 'yes', receives = 'no', 

raw=1) 

ttpBuild.linkMessage("Counter2A", "emachine1", false, true); 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('emachine1'), TTA.Message.instance 

('Counter2A'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('emachine1', 'Counter2A').set (sends = 'no', receives = 'yes', 

raw=1) 

ttpBuild.createLocalMessageFromTo("Counter2A_in", "short", 4000, 
"emachine1", "Produce2A"); 

TTA.Message.define ('Counter2A_in', d_period = 4000, init_value = 0) 
TTA.Message_uses_Msg_Type.add (TTA.Message.instance ('Counter2A_in'), TTA.Msg_Type_P.instance 

('short')) 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('emachine1'), TTA.Message.instance 

('Counter2A_in'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('emachine1', 'Counter2A_in').set (sends = 'yes', receives = 

'no', raw=1) 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('Produce2A'), TTA.Message.instance 

('Counter2A_in'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('Produce2A', 'Counter2A_in').set (sends = 'no', receives = 

'yes', raw=1) 

This block of realizes the task Produce2A of the module Producer2A in an identical 
way as for the previous task. 

ttpBuild.getScript(); 
TTA.Application_Command.run('Schedule.Make new schedule') 
TTA.Application_Command.run('Schedule.Generate code') 
TTA.Application_Command.run('File.Save node as ...', 'Node1.ndb') 

The last commands triggers the generation of the schedule for Node1 and the 
generation of the code that contains the schedule and the FT-Com layer. Finally the 
node database is saved to disk. 

The second script we will take a look at is that for Node3, which only executes the 
module ConsumerA. The beginning and end of the script is identical to that presented 
above for Node1. The only difference is the missing task code since the module does 
not contain any tasks. It is sufficient to create an E machine-like task and link the 
two messages Counter1 and Counter2A to it to perform actuator updates: 

TTPbuildScript ttpBuild = new TTPbuildScript("Node3", 
"C:\Demo\.\TTP\DemoCluster.cdb", "Node3.ndb "); 

TTA_Application_Command.run('File.New node ...', 'Node3', 'C:\Demo\.\TTP\DemoCluster.cdb') 

ttpBuild.setHardware("TTPpowernode_C2"); 
TTA.Host.customize ('Node3', node_config = 'TTPpowernode_C2', raw=1) 
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ttpBuild.createApplicationMode("DemoMode", "DemoMode_clustermode"); 
TTA.Node.App_Mode.define ('DemoMode', maximum_interrupt_latency = '150 us', pos_synch_limit = 

'max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2, TTA.Cluster.tc_period * 0.0015)', 
neg_synch_limit = 'max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 2, 
TTA.Cluster.tc_period * 0.0015)', neg_correction_limit = 'max ( 
TTA.Cluster.clock_sync.macro_tick_length / 1000 * 3, TTA.Cluster.tc_period * 0.002)', 
pos_correction_limit = 'max ( TTA.Cluster.clock_sync.macro_tick_length / 1000 * 3, 
TTA.Cluster.tc_period * 0.002)', raw=1) 

TTA.Node.App_Mode_maps_to_Cluster_Mode.add (TTA.Node.App_Mode.instance ('DemoMode'), 
TTA.Cluster_Mode.instance ('DemoMode_clustermode')) 

ttpBuild.createSubsystem("emachine"); 
TTA.Subsystem.define ('emachine') 

ttpBuild.createTask("emachine1", 75, "emachine", "DemoMode", 4000, 0, 
80); 

TTA.Node.App_Task.define ('emachine1', time_source = 'local_time', time_budget = '75', period = 
'4000', deadline = '80', phase = '0', raw=1) 

TTA.Node.Task_in_App_Mode.add (TTA.Node.App_Task.instance ('emachine1'), 
TTA.Node.App_Mode.instance ('DemoMode')) 

TTA.Node.Subsystem_runs_Task.add (TTA.Subsystem.instance ('emachine'), 
TTA.Node.App_Task.instance ('emachine1')) 

ttpBuild.linkMessage("Counter1", "emachine1", false, true); 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('emachine1'), TTA.Message.instance 

('Counter1'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('emachine1', 'Counter1').set (sends = 'no', receives = 'yes', 

raw=1) 

ttpBuild.linkMessage("Counter2A", "emachine1", false, true); 
TTA.Node.Task_uses_Message.add (TTA.Node.App_Task.instance ('emachine1'), TTA.Message.instance 

('Counter2A'), access_type = 'agreed', raw=1) 
TTA.Node.Task_uses_Message.link ('emachine1', 'Counter2A').set (sends = 'no', receives = 'yes', 

raw=1) 

ttpBuild.getScript(); 
TTA.Application_Command.run('Schedule.Make new schedule') 
TTA.Application_Command.run('Schedule.Generate code') 
TTA.Application_Command.run('File.Save node as ...', 'Node3.ndb') 

TTPbuild Results 

Again it is not easily possible to present the complete object model of a node here. 
Basically the script is already a sufficient representation of the generated object 
model. However what is missing is the schedule that TTPbuild generates out of the 
model. 
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Figure 37 Task Schedule of Node1 of the Demo Application 
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Figure 37 is a screenshot of TTPbuild illustration the node schedule of Node1 of the 
demo application. How to read to node schedule view is explained in 2.4.2. All 
relevant tasks including the FT-Com layer tasks have been expanded to see all 
messages that are received and sent by them. It can be seen that the E machine-like 
task actually is executed at time instance zero and that the FLET property of TDL is 
realized by the plugin. 
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Figure 38 Demo Application Task Invocation Diagram for Counter1 

Figure 38 illustrates one period of the processing of the message Counter1. It starts 
with the E machine-like tasks on Node1 and Node2 that receive the message 
containing Counter1 from the bus and pass it on to the task that uses it, which is 
Produce1 on both nodes. Note that the task invocation time is different on both 
nodes. This is drawn this way to show that due to FLET the actual instance of task 
invocation does not matter. It does not represent that actual schedule for the demo 
application. On both nodes the task Produce1 increments the counter value by one. 
Then the FT-Com layer task takes care of the transmission of the messages via the 
TTP bus. Node3 receives both messages with its own FT-Com task that has the 
additional function of applying the specified RDA algorithm to combine both 
messages containing a value of Counter1 into one consistent value. This value is 
passed on to the E machine-like task on Node3 where finally the actuator is updated. 

4.3.4 Generated Glue Code 

In the following the generated glue code for the demo application is presented. First 
we will take a look at the glue code generated for Node1 where the modules 
Producer1 and Producer2A are executed: 

#include "TTPos.h" 

#include "hal.h" 

#include "ttpc_msg.h" 

#include "Producer1.h" 
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#include "Producer2A.h" 

 

tt_task (Produce1) 

{ 

  produce1Impl(&Counter1_in); 

  tt_Raw_Value (Counter1) = Counter1_in; 

} 

 

tt_task (Produce2A) 

{ 

  produce2AImpl(&Counter2A_in); 

  tt_Raw_Value (Counter2A) = Counter2A_in; 

} 

 

tt_task (emachine1) 

{ 

  setYellowLED1(Counter1); 

  setYellowLED2(Counter2A); 

  tt_Raw_Value (Counter1_in) = Counter1; 

  tt_Raw_Value (Counter2A_in) = Counter2A; 

} 

In the two blocks for the tasks Produce1 and Produce2A the functionality code of the 
task is called and the produced value is passed on to the FT-Com layer for 
transmission. The E machine-like task calls the two functions of the functionality code 
for actuator updates and forwards two messages in order to maintain the FLET 
property. 

The glue code for Node3 looks quite different, as there are no tasks except the E 
machine-like task: 

#include "TTPos.h" 

#include "hal.h" 

#include "ttpc_msg.h" 

#include "ConsumerA.h" 

 

tt_task (emachine1) 

{ 

  short int Counter1MessageStatus = tt_Message_Status (Counter1); 

  setYellowLED1(Counter1); 

  setYellowLED2(Counter2A); 

  setRedLEDs(Counter1MessageStatus); 

} 

The E machine-like task retrieves the message status of Counter1 and stores it in a 
local variable. Then the appropriate actuators are updated according to the TDL code. 
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Chapter 5 

Evaluation 

5.1 Summary 

In this section the results and findings of the work are summarized. The main 
purpose of the thesis was the integration of TDL with the TTP tools. In the following 
various aspects of it are discussed. 

Distribution 

The current version of the TDL language and compiler has basic support for 
distribution. This support consists of constructs to link modules with the public and 
import statements. The platform specific specification of how modules should be 
distributed among multiple nodes must be provided in addition to the TDL program. 
The tool chain presented in this thesis performs all the necessary steps to generate 
code for the distributed TTP platform out of TDL modules plus an additional property 
file. It uses TTP protocol services such as time synchronization by means of the 
corresponding TTP tools and introduces the necessary properties to specify the 
distribution of modules among nodes. Some of those integration mechanisms may 
serve as generic solutions for the integration of other distributed platforms with TDL. 

Fault Tolerance 

The TDL language does not provide ways to specify or handle fault tolerance. The 
challenge was to identify how it is possible to realize features like replication, 
redundancy and error detection for TDL modules. The module was chosen as unit of 
replication and the feasibility of this choice was demonstrated. Ways to specify fault 
tolerance properties for TDL modules have been developed and a solution for 
providing information about the status of replicated modules by means of dedicated 
sensors has been found. This may as well serve as an example for the integration of 
fault tolerance features on other platforms and as contribution to the development of 
a generic way to specify fault tolerance properties for TDL programs, including the 
introduction of a generic error detection interface. 

Reusability 

A glue code generator was implemented to provide easier integration of C code with 
the operating system and its services that are provided for the TTP platform. The 
goal was to have no platform-specific code in the functionality code and to be able to 
use the generic language bindings for C that are specified for TDL. This proofs that 
the approach of TDL regarding platform-independence is feasible with the TTP 
platform.  

TDL Plugin Interface 

The development of the plugin and the corresponding tool chain demonstrated the 
flexibility of the plugin interface of the TDL compiler. The suitability for a plugin that 
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realizes distribution was shown but the experience can as well be used for future 
improvements to the interface. One specific suggestion for an improvement would be 
to enable plugins to perform actions after the whole compilation process of multiple 
modules is finished. This would avoid having the lastModule property for the plugin 
proposed in this thesis and probably would be useful for plugins for other platforms 
as well. 

E Machine 

In the presented tool chain the E machine implementation differs from former Giotto 
case studies. Due to the static nature of the TTP protocol and the development tools 
it made sense to make a static approach concerning the E machine as well. The E 
code produced by the compiler was not used to feed an interpretative E machine. 
Instead the compiler plugin processes each module and generates scripts for the TTP 
tools and glue code that together realize the timing and functionality that is given by 
the TDL code. This solution might again serve as a prototype for applications or 
platforms with a similar static nature or where safety and reliability or easier 
verifiability is preferred over flexibility. 

Bus Schedule 

The thesis identified typical problems of distributed scheduling, especially in 
combination with the FLET assumption of TDL. It was demonstrated that maintaining 
the FLET property in distributed environments is a complicated task because a lot of 
constraints have to be obeyed. Although no optimal generic solution was found these 
constraints were identified and a way was found to meet those constraints for simple 
applications. There is still room for optimizations here in order to use the bus and 
CPU time on each node more efficiently. 

TTP Tools 

Developing the TDL plugin tool chain also showed the capabilities of TTTech’s TTP 
tools. It was possible to realize TDL requirements like the FLET property with the help 
of the powerful programming interface of those tools. On the other hand also some 
weaknesses like the rather inefficient realization of the E machine-like task with 
TTPbuild were identified that can be seen as a suggestion to further improve the tools 
or to go for a proprietary implementation of the required functionality. 

Tool Chain Comparison 

The comparison between the TTP tool chain and the newly developed TDL-TTP tool 
chain for the TTP platform demonstrates the differences and advantages of TDL over 
traditional design approaches. The clearest advantage of TDL is its platform 
independence. Existing modules and functionality code can be reused with no or 
minor changes on different platforms for which a corresponding compiler plugin 
exists. In contrast, applications developed for the TTP hardware do not have this 
flexibility and a radical redesign is needed when changing the underlying platform. 
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5.2 Restrictions  

The restrictions of the current plugin implementation and of the current version of 
the TTP tools are listed in this section. 

Not all language constructs of TDL are supported by the plugin for the TTP platform. 
This is partly due to specific reasons as for example for public sensors as explained in 
3.5, and partly because some constructs were not regarded as critical for proofing 
that the integration of TDL with the TTP tools is possible. An example for the latter 
would be state ports. 

TDL supports functions as initialization values for output ports and actuators which 
are called at runtime. As the plugin needs to know the actual init values for all ports 
that need to be transferred via the TTP bus, in order to set the corresponding values 
in TTPplan and TTPbuild, only constants are supported as initialization values. 

Another significant restriction is that only one mode per TDL module is supported. 
This is due to the limitation of the TTP tools to one application mode and the lack of 
any possibility for a workaround to overcome this limitation. 

A notable restriction that is due to a specific limitation in the plugin interface of the 
TDL compiler is the need to have unique port names throughout the whole 
application. The limitation prevented the plugin from using fully qualified names with 
module and task name for the message names in the TTP tools and so identical port 
names of public tasks in different modules are not allowed.  

Apart from these clear limitations, not every TDL program that obeys them is 
necessarily executable on the TTP platform. This might be either because the TDL 
plugin is not smart enough to generate suitable cluster and node scripts or because 
the TTP tools don’t find a feasible schedule. The latter can be due to the rather 
inefficient implementation of the E machine-like tasks, especially when there are a lot 
of different FLET periods as discussed in 3.5. 

It must be said that the developed plugin is meant as a proof of concept and not as a 
fully-fledged tool that is ready for production usage. It has not been tested 
thoroughly enough and there is no guarantee that is works with all kinds of TDL 
modules that obey the restrictions mentioned above. TDL itself is still under 
development and its plugin interface might change as well, which would require 
adopting the TTP platform plugin accordingly. 

5.3 "TDL vs. TTP Tools" 

This section tries to identify the differences of developing a distributed real-time 
application from design to implementation with the TTP tools and with the TTP TDL 
plugin and points out the advantages and disadvantages of both choices. 

A basic difference between the TTTech TTP tool chain and TDL is the two-level design 
approach used by TTTech. The two levels are realized by using TTPplan for cluster 
design and TTP build for node design. The idea is that a system integrator, who 
employs a number of subsystem manufacturers, first designs the cluster schedule 
and assigns bandwidth for the specification of messages used by the various 
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subsystems. Also fault-tolerance properties have to be specified. This design 
approach requires at lot of information regarding the system at this point of 
development, but once the first level has been finished, the subsystem developers 
are independent from each other and it is possible to test and verify subsystems 
without the need to have the whole system available. This is possible as the final 
cluster schedule is already known at this point. In TDL there exists no comparable 
mechanism and so when using TDL as front-end for the TTP tools as described in this 
thesis, the two levels are transparent and hidden from the user. So a fundamental 
difference is that in the TTP tools the cluster schedule can be seen as part of the 
system specification, whereas in TDL it is derived from the communication 
requirements of the modules that form the system.  

Additional differences that TTTech points out regard information hiding and 
responsibility concerns. When using TDL, the subsystem developers would need to 
provide TDL modules to the system integrator who eventually compiles them 
together. Only then can be determined if they will actually run on a specific hardware 
platform. TTTech argues that this would no be acceptable for their customers, as this 
way on one hand a higher risk of integration is introduced and on the other hand it is 
not possible to hide information of the actual implementation from another. An 
additional argument is that in case of errors in the system it is harder to identify the 
module developer responsible for the non-working system. 

In the following the development process of the TTP tools and TDL are compared 
using three categories: Determinism, compositionality and software standardization. 
A more detailed analysis including a comparison to other commercial tools for the 
development of distributed real-time systems can be found in [13]. 

Determinism 

If a software component is called twice with the same input values at the same time 
instances, it both times has to produce the same output values at the same time 
instances. An example would be if a control component receives the same input, for 
example sensor values, it always has to react exactly in the same way. The 
consequences of determinism are minimal jitter and good testability, as each 
behavior can be reproduced. 

In TDL value and time determinism and close to zero jittering are guaranteed by the 
FLET assumption. The sensors are read and the output values for actuators are 
available at specific points in time (based on FLET), that are not influenced by the OS 
scheduler or the moments in time when the tasks are actually executed. The 
behavior of a TDL program is solely determined by its physical environment and not 
by CPU performance, bus load or scheduling strategy. 

When using the TTTech TTP tools, value and time determinism is also ensured to 
some degree. The transmission of messages and the invocation of tasks are done 
with minimal jitter as both are static at runtime and the clock synchronization of the 
TTP protocol is accurate. However when sensor readings or actuator updates are 
implemented inside tasks, the exact invocation time depends on how long the tasks 
actually run in each period. This problem also occurs if the calculation performed by a 
task is modified and its execution time changes. In order to ensure determinism, it 
would require executing sensor readings and actuator updates in a separate task, 
similar to the E machine-like task used by the TDL plugin for the TTP platform 
described in this thesis. 
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Compositionality 

Compositionality is given if the behavior of a software component is independent of 
the overall system load and configuration. This means that for example a new 
component can be added to a system without influencing the behavior of the original 
components. The consequences of compositionality are the extensibility of systems 
and the reuse of components. 

With TDL each component can be developed independently and compositionality is 
guaranteed because of the precise timing model based on FLET. Since the parallel 
composition of timed programs does not change the timing behavior of the individual 
program, compositionality is guaranteed in TDL. 

The TTP tool chain by TTTech also aims at compositionality, but it has certain 
restrictions on it. It is required that components that require communication on the 
TTP bus or fault tolerance mechanisms are already known when designing the first 
level of the two-level design approach, as their communication and fault tolerance 
needs to be specified at this point of development. This limits the extensibility of the 
system but it does ensure that the components are independent of overall system 
load regarding the communication system. 

Software standardization 

Software standardization is given when the behavior of a software component is 
specified independently of its implementation. For example, the hardware, the 
operating system, or the bus architecture can be changed without changing the 
behavior of the application components. The consequences of software 
standardization are upgradeability of hardware, portability of software and the 
possibility to move software components between nodes of the system. 

TDL separates the functionality and the timing behavior and platform specifications. 
It is easy to change the platform without changing the model of the software and its 
functionality by changing only the platform annotations. This separation will maintain 
the behavior of the whole system although the underlying hardware platform may be 
changed or become distributed. 

It is clear that the TTP tools cannot provide software standardization to the degree 
that TDL provides, simply because the fact that they are tailored to the specific 
requirements of the TTP protocol on cluster-level and the TTTech operation system 
TTPos and the FT-Com layer on node-level. Only a limited range of hardware targets 
is supported and the user has no possibility to extend that range. 
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